×

Multiplicity-induced-dominancy for delay systems: comprehensive examples in the scalar neutral case. (English) Zbl 1527.93248

Summary: This article focuses on the characterization of a particular spectral property called multiplicity-induced-dominancy applying for linear dynamical systems described by delay-differential equations. More precisely, we characterize the property in the scalar neutral case with respect to the system parameters. Particular attention is paid to the so-called over-order multiplicities corresponding to real double and triple characteristic roots.

MSC:

93C43 Delay control/observation systems
93C23 Control/observation systems governed by functional-differential equations
93C05 Linear systems in control theory

Software:

DLMF
Full Text: DOI

References:

[1] Balogh, T.; Boussaada, I.; Insperger, T.; Niculescu, S.-I., Conditions for stabilizability of time-delay systems with real-rooted plant. Int. J. Robust Nonlinear Control, 6, 3206-3224 (2022) · Zbl 1527.93324
[2] Bellman, R.; Cooke, K., Differential-Difference Equations (1963), Academic Press: Academic Press New York · Zbl 0105.06402
[3] Benarab, A.; Boussaada, I.; Trabelsi, K.; Bonnet, C., Multiplicity-induced-dominancy property for second-order neutral differential equations with application in oscillation damping. Eur. J. Control, 100721 (2022) · Zbl 1507.93193
[4] Boussaada, I.; Mazanti, G.; Niculescu, S.-I., The generic multiplicity-induced-dominancy property from retarded to neutral delay-differential equations: when delay-systems characteristics meet the zeros of Kummer functions. C. R. Math. Acad. Sci. Paris, 349-369 (2022) · Zbl 1500.34066
[5] Boussaada, I.; Mazanti, G.; Niculescu, S.-I., Some remarks on the location of non-asymptotic zeros of Whittaker and Kummer hypergeometric functions. Bull. Sci. Math. (2022) · Zbl 1503.33005
[6] Boussaada, I.; Mazanti, G.; Niculescu, S.-I.; Benarab, A., MID property for delay systems: insights on spectral values with intermediate multiplicity. Proc. of the 61st IEEE Conf. on Decision and Control, Cancun, Mexico (2022)
[7] Boussaada, I.; Niculescu, S.-I., Characterizing the codimension of zero singularities for time-delay systems. Acta Appl. Math., 1, 47-88 (2016) · Zbl 1383.34093
[8] Boussaada, I.; Niculescu, S.-I.; El-Ati, A.; Pérez-Ramos, R.; Trabelsi, K., Multiplicity-induced-dominancy in parametric second-order delay differential equations: analysis and application in control design. ESAIM Control Optim. Calc. Var., 34 (2020) · Zbl 1453.34098
[9] Boussaada, I.; Tliba, S.; Niculescu, S.-I.; Unal, H.; Vyhlídal, T., Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system. Linear Algebra Appl., 589-604 (2018) · Zbl 1420.34089
[10] Boussaada, I.; Unal, H.; Niculescu, S.-I., Multiplicity and stable varieties of time-delay systems: a missing link. Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems, 1-6 (2016)
[11] Brayton, R. K., Small-signal stability criterion for electrical networks containing lossless transmission lines. IBM J. Res. Dev., 6, 431-440 (1968) · Zbl 0172.20703
[12] Buchholz, H., The Confluent Hypergeometric Function with Special Emphasis on its Applications. Springer Tracts in Natural Philosophy (1969), Springer-Verlag · Zbl 0169.08501
[13] Callender, A.; Hartree, D. R.; Porter, A., Time-lag in a control system. Philos. Trans. R. Soc. London (Series A), 756, 415-444 (1936) · Zbl 0014.32302
[14] Cooke, K. L.; Krumme, D. W., Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl., 372-387 (1968) · Zbl 0186.16902
[15] Coron, J. M.; Tamasoiu, S. O., Feedback stabilization for a scalar conservation law with PID boundary control. Chin. Ann. Math., Ser. B, 5, 763-776 (2015) · Zbl 1321.93052
[16] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., Higher Transcendental Functions (1981), Robert E. Krieger Publishing Co., Inc.: Robert E. Krieger Publishing Co., Inc. Melbourne, Fla. · Zbl 0052.29502
[17] Frisch, R.; Holme, H., The characteristic solutions of a mixed difference and differential equation occurring in economic dynamics. Econometrica, 2, 225-239 (1935) · JFM 61.1326.05
[18] Gu, K.; Kharitonov, V. L.; Chen, J., Stability of Time-Delay Systems. Control Engineering (2003), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 1039.34067
[19] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional Differential Equations. Applied Mathematics Sciences (1993), Springer Verlag: Springer Verlag New York · Zbl 0787.34002
[20] Hayes, N. D., Roots of the transcendental equation associated with a certain difference-differential equation. J. Lond. Math. Soc., 3, 226-232 (1950) · Zbl 0038.24102
[21] Logemann, H.; Rebarber, R.; Weiss, G., Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop. SIAM J. Control Optim., 572-600 (1996) · Zbl 0853.93081
[22] Mazanti, G.; Boussaada, I.; Niculescu, S.-I., Multiplicity-induced-dominancy for delay-differential equations of retarded type. J. Differ. Equ., 84-118 (2021) · Zbl 1471.34140
[23] Mazanti, G.; Boussaada, I.; Niculescu, S.-I.; Chitour, Y., Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: the lossless propagation case. IFAC-PapersOnLine, 9, 764-769 (2021)
[24] Michiels, W.; Niculescu, S.-I., Stability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based approach (2014), SIAM · Zbl 1305.93002
[25] Niculescu, S. I., Delay Effects on Stability. A Robust Control Approach. LNCIS (2001), Springer: Springer London · Zbl 0997.93001
[26] Niculescu, S.-I.; Boussaada, I.; Li, X.-G.; Mazanti, G.; Méndez-Barrios, C.-F., Stability, delays and multiple characteristic roots in dynamical systems: a guided tour. IFAC-PapersOnLine, 18, 222-239 (2021)
[27] NIST Handbook of Mathematical Functions · Zbl 1198.00002
[28] Pinney, E., Ordinary Difference-Differential Equations (1958), Univ. California Press · Zbl 0091.07901
[29] Pólya, G.; Szegő, G., Problems and Theorems in Analysis. Series, Integral Calculus, Theory of Functions (1972), Springer-Verlag: Springer-Verlag New York, Heidelberg, and Berlin · Zbl 0236.00003
[30] Răsvan, V., Propagation, delays, and stability (robust versus fragile). Int. J. Robust Nonlinear Control, 6, 3225-3250 (2022) · Zbl 1527.93338
[31] Sipahi, R.; Niculescu, S. I.; Abdallah, C. T.; Michiels, W.; Gu, K., Stability and stabilization of systems with time delay: limitations and opportunities. IEEE Control Syst. Mag., 1, 38-65 (2011) · Zbl 1395.93271
[32] Stépán, G., Retarded Dynamical Systems: Stability and Characteristic Functions. Pitman Research Notes in Mathematics Series (1989), Longman Sci. and Tech. · Zbl 0686.34044
[33] Wright, E. M., Stability criteria and the real roots of a transcendental equation. J. Soc. Ind. Appl. Math., 136-148 (1961) · Zbl 0109.04705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.