×

Modeling realistic synaptic inputs of CA1 hippocampal pyramidal neurons and interneurons via adaptive generalized leaky integrate-and-fire models. (English) Zbl 1542.92005

In a previous paper, [A. Marasco et al., Bull. Math. Biol. 85, No. 11, Paper No. 109, 38 p. (2023; Zbl 1530.92012)], the A-GLIF model to describe the dynamics, in a subthreshold regime of the membrane potential V in response to constant and piecewise constant stimulation currents has been introduced.
In the present article, one extends the A-GLIF model with some new update rules that enable the model to reproduce constant as well as variable current inputs. The referred A-GLIF model for constant and piecewise constant current injections is extensively described in the Subsection 2.2. and Appendix. Supporting Information of the present paper.
The new A-GLIF model for time-varying stimulation currents is then introduced in the Subsection 2.3. in form of a nonautonomous system of differential equations, \[ \frac{dV}{dt}=\alpha(t)+\beta(I_{\mathrm{dep}}-I_{\mathrm{adap}})+\delta(1+V) +F(t), \] \begin{align*} \frac{I_{\mathrm{adap}}}{dt}&= 1-I_{\mathrm{adap}}+V+G(t),\\ \frac{I_{\mathrm{dep}}}{dt}&=-\beta I_{\mathrm{dep}} \end{align*} together with additional initial conditions and some update rules. Statistical analysis, performance measures, implementation techniques, simulation results and model validation are largely presented. A general discussion on obtained results is performed at the end of the article.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics

Citations:

Zbl 1530.92012

Software:

NEURON
Full Text: DOI

References:

[1] Ly, Cheng, Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity, J. Comput. Neurosci., 39, 3, 311-327, 2015 · Zbl 1382.92067
[2] Yamazaki, Tadashi; Igarashi, Jun, Realtime cerebellum: A large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit, Neural Netw., 47, 103-111, 2013
[3] Brette, R.; Gerstner, W., Adaptive exponential integrate-and-fire model as an effective description of neuronal activity, J. Neurophysiol., 94, 5, 3637-3642, 2005
[4] Górski, T.; Depannemaecker, D.; Destexhe, A., Conductance-based adaptive exponential integrate-and-fire model, Neural Comput., 33, 1, 41-66, 2021 · Zbl 1469.92031
[5] Izhikevich, Eugene M.; Edelman, Gerald M., Large-scale model of mammalian thalamocortical systems, Proc. Natl. Acad. Sci., 105, 9, 3593-3598, 2008
[6] Marghoti, Gabriel; Prado, Thiago de Lima; Conte, Arturo Cagnato; Ferrari, Fabiano Alan Serafim; Lopes, Sergio Roberto, Intermittent chimera-like and bi-stable synchronization states in network of distinct izhikevich neurons, Chaos Solitons Fractals, 162, Article 112401 pp., 2022 · Zbl 1506.92010
[7] Ros, E.; Carrillo, R.; Ortigosa, E. M.; Barbour, B.; Agís, R., Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics, Neural Comput., 18, 12, 2959-2993, 2006 · Zbl 1107.92012
[8] Carrillo, R.; Ros, E.; Tolu, S.; Nieus, T.; D’Angelo, E., Event-driven simulation of cerebellar granule cells, Biosystems, 94, 10-17, 2008
[9] Jimenez, N. D.; Mihalas, S.; Brown, R.; Niebur, E.; Rubin, J., Locally contractive dynamics in generalized integrate-and-fire neurons, SIAM J. Appl. Dyn. Syst., 12, 3, 1474-1514, 2013 · Zbl 1284.37030
[10] Geminiani, A.; Casellato, C.; Locatelli, F.; Prestori, F.; Pedrocchi, A.; D’Angelo, E., Complex dynamics in simplified neuronal models: Reproducing golgi cell electroresponsiveness, Front. Neuroinform., 12, 2018
[11] Teeter, C.; Iyer, R.; Menon, V.; Gouwens, N.; Feng, D.; Berg, J.; Szafer, A.; Cain, N.; Zeng, H.; Hawrylycz, M.; Koch, C.; Mihalas, S., Generalized leaky integrate-and-fire models classify multiple neuron types, Nature Commun., 9, 1, 2018
[12] Wang, Z.; Guo, L.; Adjouadi, M., A generalized leaky integrate-and-fire neuron model with fast implementation method, Int. J. Neural Syst., 24, 05, Article 1440004 pp., 2014
[13] Marasco, A.; Spera, E.; Falco, V. De; Iuorio, A.; andS. Solinas, C. A. Lupascu; Migliore, M., An adaptive generalized leaky integrate-and-fire model for hippocampal CA1 pyramidal neurons and interneurons, Bull. Math. Biol., 85, 11, 109, 2023 · Zbl 1530.92012
[14] Marasco, A.; Tribuzi, C.; Iuorio, A.; Migliore, M., Mathematical generation of data-driven hippocampal CA1 pyramidal neurons and interneurons copies via A-GLIF models for large-scale networks covering the experimental variability range, Math. Biosci., 371, 109179, 2024 · Zbl 07875655
[15] Hines, M. L.; Carnevale, N. T., The NEURON simulation environment, Neural Comput., 9, 6, 1179-1209, 1997
[16] Migliore, Rosanna; Lupascu, Carmen A.; Bologna, Luca L.; Romani, Armando; Courcol, Jean-Denis; Antonel, Stefano; Geit, Werner A. H. Van; Thomson, Alex M.; Mercer, Audrey; Lange, Sigrun; Falck, Joanne; Rössert, Christian A.; Shi, Ying; Hagens, Olivier; Pezzoli, Maurizio; Freund, Tamas F.; Kali, Szabolcs; Muller, Eilif B.; Schürmann, Felix; Markram, Henry; Migliore, Michele; Lytton, William W., The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow, PLOS Comput. Biol., 14, 9, Article e1006423 pp., 2018
[17] Migliore, Michele; Ascoli, Giorgio A.; Jaffe, David B., CA3 cells: Detailed and simplified pyramidal cell models, (Cutsuridis, Vassilis; Graham, Bruce; Cobb, Stuart; Vida, Imre, Hippocampal Microcircuits: A Computational Modeler’s Resource Book, 2010, Springer New York: Springer New York New York, NY), 353-374
[18] Migliore, R.; Simone, G. De; Leinekugel, X.; Migliore, M., The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons, Eur. J. Neurosci., 45, 8, 1024-1031, 2017
[19] Garcia, Samuel; Buccino, Alessio P.; Yger, Pierre, How do spike collisions affect spike sorting performance?, eNeuro, 9, 5, 2022
[20] Zacharaki, Evangelia I.; Mporas, Iosif; Garganis, Kyriakos; Megalooikonomou, Vasileios, Spike pattern recognition by supervised classification in low dimensional embedding space, Brain Inform., 3, 2, 73-83, 2016
[21] Cutts, Catherine S.; Eglen, Stephen J., Detecting pairwise correlations in spike trains: An objective comparison of methods and application to the study of retinal waves, J. Neurosci., 34, 43, 14288-14303, 2014
[22] Ciba, M.; Isomura, T.; Jimbo, Y.; Bahmer, A.; Thielemann, C., Spike-contrast: A novel time scale independent and multivariate measure of spike train synchrony, J. Neurosci. Methods, 293, 136-143, 2018
[23] Satuvuori, E.; M, M. Mulansky; Bozanic, N.; Malvestio, I.; Zeldenrust, F.; Lenk, K.; Kreuz, T., Measures of spike train synchrony for data with multiple time scales, J. Neurosci. Methods, 287, 25-38, 2017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.