×

lifex-cfd: an open-source computational fluid dynamics solver for cardiovascular applications. (English) Zbl 07803327

Summary: Computational fluid dynamics (CFD) is an important tool for the simulation of the cardiovascular function and dysfunction. Due to the complexity of the anatomy, the transitional regime of blood flow in the heart, and the strong mutual influence between the flow and the physical processes involved in the heart function, the development of accurate and efficient CFD solvers for cardiovascular flows is still a challenging task. In this paper we present \(\mathtt{life^x}\)-cfd, an open-source CFD solver for cardiovascular simulations based on the \(\mathtt{life^x}\)-cfd finite element library, written in modern C++ and exploiting distributed memory parallelism. We model blood flow in both physiological and pathological conditions via the incompressible Navier-Stokes equations, accounting for moving cardiac valves, moving domains, and transition-to-turbulence regimes. In this paper, we provide an overview of the underlying mathematical formulation, numerical discretization, implementation details and examples on how to use \(\mathtt{life^x}\)-cfd. We verify the code through rigorous convergence analyses, and we show its almost ideal parallel speedup. We demonstrate the accuracy and reliability of the numerical methods implemented through a series of idealized and patient-specific vascular and cardiac simulations, in different physiological flow regimes. The \(\mathtt{life^x}\)-cfd source code is available under the LGPLv3 license, to ensure its accessibility and transparency to the scientific community, and to facilitate collaboration and further developments.

MSC:

76-XX Fluid mechanics
92-XX Biology and other natural sciences

References:

[1] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, vol. 1 (2010), Springer Science & Business Media
[2] Chnafa, C.; Mendez, S.; Nicoud, F., Image-based simulations show important flow fluctuations in a normal left ventricle: what could be the implications?. Ann. Biomed. Eng., 11, 3346-3358 (2016)
[3] Collia, D.; Zovatto, L.; Pedrizzetti, G., Analysis of mitral valve regurgitation by computational fluid dynamics. APL Bioeng., 3 (2019)
[4] Luraghi, G.; Wu, W.; De Castilla, H.; Rodriguez Matas, J. F.; Dubini, G.; Dubuis, P.; Grimmé, M.; Migliavacca, F., Numerical approach to study the behavior of an artificial ventricle: fluid-structure interaction followed by fluid dynamics with moving boundaries. Artif. Organs, 10, E315-E324 (2018)
[5] Luraghi, G.; Matas, J. F.R.; Beretta, M.; Chiozzi, N.; Iannetti, L.; Migliavacca, F., The impact of calcification patterns in transcatheter aortic valve performance: a fluid-structure interaction analysis. Comput. Methods Biomech. Biomed. Eng., 4, 375-383 (2020)
[6] Goubergrits, L.; Vellguth, K.; Obermeier, L.; Schlief, A.; Tautz, L.; Bruening, J.; Lamecker, H.; Szengel, A.; Nemchyna, O.; Knosalla, C., CT-based analysis of left ventricular hemodynamics using statistical shape modeling and computational fluid dynamics. Front. Cardiovasc. Med. (2022)
[7] Karabelas, E.; Longobardi, S.; Fuchsberger, J.; Razeghi, O.; Rodero, C.; Strocchi, M.; Rajani, R.; Haase, G.; Plank, G.; Niederer, S., Global sensitivity analysis of four chamber heart hemodynamics using surrogate models. IEEE Trans. Biomed. Eng. (2022)
[8] Kronborg, J.; Svelander, F.; Eriksson-Lidbrink, S.; Lindström, L.; Homs-Pons, C.; Lucor, D.; Hoffman, J., Computational analysis of flow structures in turbulent ventricular blood flow associated with mitral valve intervention. Front. Physiol., 752 (2022)
[9] Mittal, R.; Seo, J. H.; Vedula, V.; Choi, Y. J.; Liu, H.; Huang, H. H.; Jain, S.; Younes, L.; Abraham, T.; George, R. T., Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys., 1065-1082 (2016) · Zbl 1349.92010
[10] Quarteroni, A.; Dede’, L.; Manzoni, A.; Vergara, C., Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications, vol. 33 (2019), Cambridge University Press · Zbl 1411.92003
[11] This, A.; Morales, H. G.; Bonnefous, O.; Fernández, M. A.; Gerbeau, J.-F., A pipeline for image based intracardiac CFD modeling and application to the evaluation of the PISA method. Comput. Methods Appl. Mech. Eng. (2020)
[12] Zingaro, A.; Dede’, L.; Menghini, F.; Quarteroni, A., Hemodynamics of the heart’s left atrium based on a Variational Multiscale-LES numerical method. Eur. J. Mech. B, Fluids, 380-400 (2021) · Zbl 1492.76159
[13] Viola, F.; Meschini, V.; Verzicco, R., Fluid-Structure-Electrophysiology interaction (FSEI) in the left-heart: a multi-way coupled computational model. Eur. J. Mech. B, Fluids, 212-232 (2020) · Zbl 1477.76120
[14] Viola, F.; Spandan, V.; Meschini, V.; Romero, J.; Fatica, M.; de Tullio, M. D.; Verzicco, R., FSEI-GPU: GPU accelerated simulations of the fluid-structure-electrophysiology interaction in the left heart. Comput. Phys. Commun. (2022)
[15] Santiago, A.; Aguado-Sierra, J.; Zavala-Aké, M.; Doste-Beltran, R.; Gómez, S.; Arís, R.; Cajas, J. C.; Casoni, E.; Vázquez, M., Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. Int. J. Numer. Methods Biomed. Eng., 12 (2018)
[16] Viscardi, F.; Vergara, C.; Antiga, L.; Merelli, S.; Veneziani, A.; Puppini, G.; Faggian, G.; Mazzucco, A.; Luciani, G. B., Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve. Artif. Organs, 12, 1114-1120 (2010)
[17] Faggiano, E.; Antiga, L.; Puppini, G.; Quarteroni, A.; Luciani, G. B.; Vergara, C., Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve. Biomech. Model. Mechanobiol., 801-813 (2013)
[18] Tagliabue, A.; Dede, L.; Quarteroni, A., Fluid dynamics of an idealized left ventricle: the extended Nitsche’s method for the treatment of heart valves as mixed time varying boundary conditions. Int. J. Numer. Methods Fluids, 3, 135-164 (2017)
[19] Tricerri, P.; Dedè, L.; Deparis, S.; Quarteroni, A.; Robertson, A. M.; Sequeira, A., Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws. Comput. Mech., 479-498 (2015) · Zbl 1311.76159
[20] Fumagalli, I.; Polidori, R.; Renzi, F.; Fusini, L.; Quarteroni, A.; Pontone, G.; Vergara, C., Fluid-structure interaction analysis of transcatheter aortic valve implantation. Int. J. Numer. Methods Biomed. Eng. (2023)
[21] Paliwal, N.; Ali, R. L.; Salvador, M.; O’Hara, R.; Yu, R.; Daimee, U. A.; Akhtar, T.; Pandey, P.; Spragg, D. D.; Calkins, H., Presence of left atrial fibrosis may contribute to aberrant hemodynamics and increased risk of stroke in atrial fibrillation patients. Front. Physiol., 684 (2021)
[22] Mill, J.; Agudelo, V.; Olivares, A. L.; Pons, M. I.; Silva, E.; Nuñez-Garcia, M.; Morales, X.; Arzamendi, D.; Freixa, X.; Noailly, J., Sensitivity analysis of in silico fluid simulations to predict thrombus formation after left atrial appendage occlusion. Mathematics, 18, 2304 (2021)
[23] Morales Ferez, X.; Mill, J.; Juhl, K. A.; Acebes, C.; Iriart, X.; Legghe, B.; Cochet, H.; De Backer, O.; Paulsen, R. R.; Camara, O., Deep learning framework for real-time estimation of in-silico thrombotic risk indices in the left atrial appendage. Front. Physiol. (2021)
[24] Oks, D.; Samaniego, C.; Houzeaux, G.; Butakoff, C.; Vázquez, M., Fluid-structure interaction analysis of eccentricity and leaflet rigidity on thrombosis biomarkers in bioprosthetic aortic valve replacements. Int. J. Numer. Methods Biomed. Eng., 12 (2022)
[25] Santiago, A.; Butakoff, C.; Eguzkitza, B.; Gray, R. A.; May-Newman, K.; Pathmanathan, P.; Vu, V.; Vázquez, M., Design and execution of a verification, validation, and uncertainty quantification plan for a numerical model of left ventricular flow after LVAD implantation. PLoS Comput. Biol., 6 (2022)
[26] Domenichini, F.; Pedrizzetti, G.; Baccani, B., Three-dimensional filling flow into a model left ventricle. J. Fluid Mech., 179-198 (2005) · Zbl 1075.76065
[27] Domenichini, F.; Querzoli, G.; Cenedese, A.; Pedrizzetti, G., Combined experimental and numerical analysis of the flow structure into the left ventricle. J. Biomech., 9, 1988-1994 (2007)
[28] Seo, J. H.; Mittal, R., Effect of diastolic flow patterns on the function of the left ventricle. Phys. Fluids, 11 (2013)
[29] Seo, J. H.; Vedula, V.; Abraham, T.; Lardo, A. C.; Dawoud, F.; Luo, H.; Mittal, R., Effect of the mitral valve on diastolic flow patterns. Phys. Fluids, 12 (2014)
[30] Tagliabue, A.; Dede’, L.; Quarteroni, A., Complex blood flow patterns in an idealized left ventricle: a numerical study. Chaos, 9 (2017) · Zbl 1387.92030
[31] Dede’, L.; Menghini, F.; Quarteroni, A., Computational fluid dynamics of blood flow in an idealized left human heart. Int. J. Numer. Methods Biomed. Eng., 11 (2021)
[32] Masci, A.; Alessandrini, M.; Forti, D.; Menghini, F.; Dede’, L.; Tomasi, C.; Quarteroni, A.; Corsi, C., A proof of concept for computational fluid dynamic analysis of the left atrium in atrial fibrillation on a patient-specific basis. J. Biomech. Eng., 1 (2020)
[33] Corti, M.; Zingaro, A.; Dede’, L.; Quarteroni, A., Impact of atrial fibrillation on left atrium haemodynamics: a computational fluid dynamics study. Comput. Biol. Med. (2022)
[34] Di Gregorio, S.; Fedele, M.; Pontone, G.; Corno, A. F.; Zunino, P.; Vergara, C.; Quarteroni, A., A computational model applied to myocardial perfusion in the human heart: from large coronaries to microvasculature. J. Comput. Phys. (2021) · Zbl 07508444
[35] Barnafi Wittwer, N. A.; Gregorio, S. D.; Dede’, L.; Zunino, P.; Vergara, C.; Quarteroni, A., A multiscale poromechanics model integrating myocardial perfusion and the epicardial coronary vessels. SIAM J. Appl. Math., 4, 1167-1193 (2022) · Zbl 1497.92071
[36] Sacco, F.; Paun, B.; Lehmkuhl, O.; Iles, T. L.; Iaizzo, P. A.; Houzeaux, G.; Vázquez, M.; Butakoff, C.; Aguado-Sierra, J., Left ventricular trabeculations decrease the wall shear stress and increase the intra-ventricular pressure drop in CFD simulations. Front. Physiol., 458 (2018)
[37] Vedula, V.; Seo, J.-H.; Lardo, A. C.; Mittal, R., Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle. Theor. Comput. Fluid Dyn., 1, 3-21 (2016)
[38] Brown, J. A.; Lee, J. H.; Smith, M. A.; Wells, D. R.; Barrett, A.; Puelz, C.; Vavalle, J. P.; Griffith, B. E., Patient-specific immersed finite element-difference model of transcatheter aortic valve replacement. Ann. Biomed. Eng., 1, 103-116 (2023)
[39] E. Kung, C. Baker, C. Corsini, A. Baretta, G. Biglino, G. Arbia, S. Pant, A. Marsden, A. Taylor, M. Quail, I. Vignon-Clementel, G. Pennati, F. Migliavacca, S. Schievano, A. Hlavacek, A. Dorfman, T.-Y. Hsia, R. Figliola, Hemodynamics after Fontan procedure are determined by patient characteristics and anastomosis placement not graft selection: a patient-specific multiscale computational study, 2021, medRxiv, https://doi.org/10.1101/2021.10.03.21264033
[40] Lantz, J.; Bäck, S.; Carlhäll, C.-J.; Bolger, A.; Persson, A.; Karlsson, M.; Ebbers, T., Impact of prosthetic mitral valve orientation on the ventricular flow field: comparison using patient-specific computational fluid dynamics. J. Biomech. (2021)
[41] Rigatelli, G.; Chiastra, C.; Pennati, G.; Dubini, G.; Migliavacca, F.; Zuin, M., Applications of computational fluid dynamics to congenital heart diseases: a practical review for cardiovascular professionals. Expert Rev. Cardiovasc. Ther., 10, 907-916 (2021)
[42] Oks, D.; Houzeaux, G.; Vázquez, M.; Neidlin, M.; Samaniego, C., Effect of TAVR commissural alignment on coronary flow: a fluid-structure interaction analysis. Comput. Methods Programs Biomed. (2023)
[43] Timmis, A.; Townsend, N.; Gale, C. P.; Torbica, A.; Lettino, M.; Petersen, S. E.; Mossialos, E. A.; Maggioni, A. P.; Kazakiewicz, D.; May, H. T., European Society of Cardiology: cardiovascular disease statistics 2019. Eur. Heart J., 1, 12-85 (2020)
[44] Virani, S. S.; Alonso, A.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Delling, F. N., Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation, 9, e139-e596 (2020)
[45] Updegrove, A.; Wilson, N. M.; Merkow, J.; Lan, H.; Marsden, A. L.; Shadden, S. C., SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng., 525-541 (2017)
[46] De Vita, F.; De Tullio, M.; Verzicco, R., Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Theor. Comput. Fluid Dyn., 1, 129-138 (2016)
[47] Marom, G., Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng., 595-620 (2015) · Zbl 1348.74099
[48] Spühler, J. H.; Jansson, J.; Jansson, N.; Hoffman, J., A high performance computing framework for finite element simulation of blood flow in the left ventricle of the human heart, 155-164
[49] Votta, E.; Le, T. B.; Stevanella, M.; Fusini, L.; Caiani, E. G.; Redaelli, A.; Sotiropoulos, F., Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech., 2, 217-228 (2013)
[50] Chnafa, C.; Mendez, S.; Nicoud, F., Image-based large-eddy simulation in a realistic left heart. Comput. Fluids, 173-187 (2014) · Zbl 1391.76886
[51] Nicoud, F.; Chnafa, C.; Siguenza, J.; Zmijanovic, V.; Mendez, S., Large-eddy simulation of turbulence in cardiovascular flows, 147-167
[52] Africa, P. C., lifex: a flexible, high performance library for the numerical solution of complex finite element problems. SoftwareX (2022)
[53] Arndt, D.; Bangerth, W.; Blais, B.; Fehling, M.; Gassmöller, R.; Heister, T.; Heltai, L.; Köcher, U.; Kronbichler, M.; Maier, M.; Munch, P.; Pelteret, J.-P.; Proell, S.; Simon, K.; Turcksin, B.; Wells, D.; Zhang, J., The deal.II library, version 9.3. J. Numer. Math., 3, 171-186 (2021) · Zbl 1478.65004
[54] Schwarz, E. L.; Pegolotti, L.; Pfaller, M. R.; Marsden, A. L., Beyond CFD: emerging methodologies for predictive simulation in cardiovascular health and disease. Biophys. Rev., 1 (2023)
[55] Maas, S. A.; Ellis, B. J.; Ateshian, G. A.; Weiss, J. A., FEBio: finite elements for biomechanics. J. Biomech. Eng., 1 (2012)
[56] Lee, J.; Cookson, A.; Roy, I.; Kerfoot, E.; Asner, L.; Vigueras, G.; Sochi, T.; Deparis, S.; Michler, C.; Smith, N. P.; Nordsletten, D. A., Multiphysics computational modeling in cheart. SIAM J. Sci. Comput., 3, C150-C178 (2016) · Zbl 1358.92015
[57] Griffith, B.; Bhalla, A., IBAMR: an adaptive and distributed-memory parallel implementation of the immersed boundary method (2013)
[58] Mortensen, M.; Valen-Sendstad, K., Oasis: a high-level/high-performance open source Navier-Stokes solver. Comput. Phys. Commun., 177-188 (2015) · Zbl 1344.76006
[59] Arndt, D.; Fehn, N.; Kanschat, G.; Kormann, K.; Kronbichler, M.; Munch, P.; Wall, W. A.; Witte, J., ExaDG: high-order discontinuous Galerkin for the Exa-Scale, 189-224
[60] Blais, B.; Barbeau, L.; Bibeau, V.; Gauvin, S.; El Geitani, T.; Golshan, S.; Kamble, R.; Mirakhori, G.; Chaouki, J., Lethe: an open-source parallel high-order adaptative CFD solver for incompressible flows. SoftwareX (2020)
[61] Chen, G.; Xiong, Q.; Morris, P. J.; Paterson, E. G.; Sergeev, A.; Wang, Y., Openfoam for computational fluid dynamics. Not. Am. Math. Soc., 4, 354-363 (2014) · Zbl 1338.76002
[62] Brenneisen, J.; Daub, A.; Gerach, T.; Kovacheva, E.; Huetter, L.; Frohnapfel, B.; Dössel, O.; Loewe, A., Sequential coupling shows minor effects of fluid dynamics on myocardial deformation in a realistic whole-heart model. Front. Cardiovasc. Med., 1967 (2021)
[63] Lyras, K. G.; Lee, J., Comparison of numerical implementations for modelling flow through arterial stenoses. Int. J. Mech. Sci. (2021)
[64] Chen, A.; Azriff Basri, A.; Ismail, N. B.; Ahmad, K. Arifin, Hemodynamic effects of subaortic stenosis on blood flow characteristics of a mechanical heart valve based on openfoam simulation. Bioengineering, 3, 312 (2023)
[65] Scroggs, M. W.; Dokken, J. S.; Richardson, C. N.; Wells, G. N., Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes. ACM Trans. Math. Softw., 2 (May 2022) · Zbl 07666975
[66] Esmaily-Moghadam, M.; Bazilevs, Y.; Marsden, A. L., A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech., 1141-1152 (2013) · Zbl 1388.76130
[67] Esmaily-Moghadam, M.; Bazilevs, Y.; Marsden, A. L., A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. Comput. Methods Appl. Mech. Eng., 40-62 (2015) · Zbl 1423.76228
[68] (2023), Trilinos Project Website
[69] Balay, S.; Abhyankar, S.; Adams, M. F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E.; Dalcin, L.; Dener, A.; Eijkhout, V.; Faibussowitsch, J.; Gropp, W. D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M. G.; Kong, F.; Kruger, S.; May, D. A.; McInnes, L. C.; Mills, R. T.; Mitchell, L.; Munson, T.; Roman, J. E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J. (2022), Argonne National Laboratory, PETSc/TAO users manual, Tech. Rep. ANL-21/39 - Revision 3.18
[70] Africa, P. C.; Piersanti, R.; Fedele, M.; Dede’, L.; Quarteroni, A., lifex-fiber: an open tool for myofibers generation in cardiac computational models. BMC Bioinform., 143 (2023)
[71] Africa, P. C.; Salvador, M.; Gervasio, P.; Dede’, L.; Quarteroni, A., A matrix-free high-order solver for the numerical solution of cardiac electrophysiology. J. Comput. Phys. (2023) · Zbl 07660345
[72] Cicci, L.; Fresca, S.; Manzoni, A., Deep-HyROMnet: a deep learning-based operator approximation for hyper-reduction of nonlinear parametrized PDEs. J. Sci. Comput., 2, 57 (2022) · Zbl 1503.65225
[73] Cicci, L.; Fresca, S.; Manzoni, A.; Quarteroni, A., Efficient approximation of cardiac mechanics through reduced order modeling with deep learning-based operator approximation (2022), arXiv preprint
[74] Cicci, L.; Fresca, S.; Pagani, S.; Manzoni, A.; Quarteroni, A., Projection-based reduced order models for parameterized nonlinear time-dependent problems arising in cardiac mechanics. Math. Eng., 2, 1-38 (2022) · Zbl 1533.92019
[75] Fedele, M.; Piersanti, R.; Regazzoni, F.; Salvador, M.; Africa, P. C.; Bucelli, M.; Zingaro, A.; Quarteroni, A., A comprehensive and biophysically detailed computational model of the whole human heart electromechanics. Comput. Methods Appl. Mech. Eng. (2023) · Zbl 1539.74238
[76] Piersanti, R.; Regazzoni, F.; Salvador, M.; Corno, A. F.; Vergara, C.; Quarteroni, A., 3D-0D closed-loop model for the simulation of cardiac biventricular electromechanics. Comput. Methods Appl. Mech. Eng. (2022) · Zbl 1507.74234
[77] Regazzoni, F.; Salvador, M.; Africa, P.; Fedele, M.; Dede’, L.; Quarteroni, A., A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. J. Comput. Phys. (2022) · Zbl 1515.92032
[78] Salvador, M.; Fedele, M.; Africa, P. C.; Sung, E.; Prakosa, A.; Chrispin, J.; Trayanova, N.; Quarteroni, A., Electromechanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under arrhythmia. Comput. Biol. Med. (2021)
[79] Zingaro, A.; Fumagalli, I.; Dede’, L.; Fedele, M.; Africa, P. C.; Corno, A. F.; Quarteroni, A. M., A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete Contin. Dyn. Syst., Ser. S, 8, 2391-2427 (2022) · Zbl 1497.92076
[80] Zingaro, A.; Bucelli, M.; Piersanti, R.; Regazzoni, F.; Dede’, L.; Quarteroni, A., An electromechanics-driven fluid dynamics model for the simulation of the whole human heart (2023), arXiv preprint
[81] Fumagalli, I.; Vitullo, P.; Vergara, C.; Fedele, M.; Corno, A. F.; Ippolito, S.; Scrofani, R.; Quarteroni, A., Image-based computational hemodynamics analysis of systolic obstruction in hypertrophic cardiomyopathy. Front. Physiol., 2437 (2022)
[82] Marcinnò, F.; Zingaro, A.; Fumagalli, I.; Dede’, L.; Vergara, C., A computational study of blood flow dynamics in the pulmonary arteries. Vietnam J. Math., 1-23 (2022)
[83] Bennati, L.; Vergara, C.; Giambruno, V.; Fumagalli, I.; Corno, A. F.; Quarteroni, A.; Puppini, G.; Luciani, G. B., An image-based computational fluid dynamics study of mitral regurgitation in presence of prolapse. Cardiovasc. Eng. Technol., 1-19 (2023)
[84] Bennati, L.; Giambruno, V.; Renzi, F.; Di Nicola, V.; Maffeis, C.; Puppini, G.; Luciani, G. B.; Vergara, C., Turbulent blood dynamics in the left heart in the presence of mitral regurgitation: a computational study based on multi-series cine-MRI. Biomech. Model. Mechanobiol., 1829-1846 (2023)
[85] Zingaro, A.; Bucelli, M.; Fumagalli, I.; Dede’, L.; Quarteroni, A., Modeling isovolumetric phases in cardiac flows by an augmented resistive immersed implicit surface method. Int. J. Numer. Methods Biomed. Eng. (2023)
[86] Bucelli, M.; Dede’, L.; Quarteroni, A.; Vergara, C., Partitioned and monolithic algorithms for the numerical solution of cardiac fluid-structure interaction. Commun. Comput. Phys., 5, 1217-1256 (2022) · Zbl 1508.92070
[87] Bucelli, M.; Zingaro, A.; Africa, P. C.; Fumagalli, I.; Dede’, L.; Quarteroni, A. M., A mathematical model that integrates cardiac electrophysiology, mechanics and fluid dynamics: application to the human left heart. Int. J. Numer. Methods Biomed. Eng., 3 (2023)
[88] Bucelli, M.; Gabriel, M. G.; Quarteroni, A.; Gigante, G.; Vergara, C., A stable loosely-coupled scheme for cardiac electro-fluid-structure interaction. J. Comput. Phys. (2023) · Zbl 07715255
[89] Di Gregorio, S.; Vergara, C.; Pelagi, G. M.; Baggiano, A.; Zunino, P.; Guglielmo, M.; Fusini, L.; Muscogiuri, G.; Rossi, A.; Rabbat, M. G., Prediction of myocardial blood flow under stress conditions by means of a computational model. Eur. J. Nucl. Med. Mol. Imaging, 1-12 (2022)
[90] Zingaro, A.; Vergara, C.; Dede, L.; Regazzoni, F.; Quarteroni, A., A comprehensive mathematical model for cardiac perfusion. Sci. Rep., 1 (2023)
[91] Ethier, C. R.; Steinman, D., Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids, 5, 369-375 (1994) · Zbl 0814.76031
[92] Perktold, K.; Thurner, E.; Kenner, T., Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med. Biol. Eng. Comput., 1, 19-26 (1994)
[93] Quarteroni, A.; Manzoni, A.; Vergara, C., The Cardiovascular System: Mathematical Modelling, Numerical Algorithms and Clinical Applications, vol. 26 (2017), Cambridge University Press · Zbl 1376.92016
[94] Taylor, C. A.; Hughes, T. J.; Zarins, C. K., Finite Element Analysis of Pulsatile Flow in the Abdominal Aorta Under Resting and Exercise Conditions. ASME International Mechanical Engineering Congress and Exposition, 81-82 (1996), American Society of Mechanical Engineers
[95] Taylor, C. A.; Hughes, T. J.; Zarins, C. K., Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng., 1-2, 155-196 (1998) · Zbl 0953.76058
[96] Donea, J.; Giuliani, S.; Halleux, J.-P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng., 1-3, 689-723 (1982) · Zbl 0508.73063
[97] Donea, J.; Huerta, A.; Ponthot, J.-P.; Rodriguez-Ferran, A., Arbitrary Lagrangian-Eulerian methods, 413-437, Ch. 14
[98] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng., 3, 329-349 (1981) · Zbl 0482.76039
[99] Fedele, M.; Faggiano, E.; Dede’, L.; Quarteroni, A., A patient-specific aortic valve model based on moving resistive immersed implicit surfaces. Biomech. Model. Mechanobiol., 5, 1779-1803 (2017)
[100] Fumagalli, I.; Fedele, M.; Vergara, C.; Dede’, L.; Ippolito, S.; Nicolò, F.; Antona, C.; Scrofani, R.; Quarteroni, A., An image-based computational hemodynamics study of the systolic anterior motion of the mitral valve. Comput. Biol. Med. (2020)
[101] Stein, K.; Tezduyar, T.; Benney, R., Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Mech., 1, 58-63 (2003) · Zbl 1110.74689
[102] Jasak, H.; Tukovic, Z., Automatic mesh motion for the unstructured finite volume method. Trans. FAMENA, 2, 1-20 (2006)
[103] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics (2010), Springer Science & Business Media · Zbl 0913.65002
[104] Kundu, P. K.; Cohen, I. M.; Dowling, D. R., Fluid Mechanics (2015), Academic Press
[105] Womersley, J. R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol., 3, 553 (1955)
[106] Berselli, L. C.; Miloro, P.; Menciassi, A.; Sinibaldi, E., Exact solution to the inverse Womersley problem for pulsatile flows in cylindrical vessels, with application to magnetic particle targeting. Appl. Math. Comput., 10, 5717-5729 (2013) · Zbl 1426.76100
[107] Bertoglio, C.; Caiazzo, A., A tangential regularization method for backflow stabilization in hemodynamics. J. Comput. Phys., 162-171 (2014) · Zbl 1349.76180
[108] Moghadam, M. E.; Bazilevs, Y.; Hsia, T.-Y.; Vignon-Clementel, I. E.; Marsden, A. L., A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech., 3, 277-291 (2011) · Zbl 1398.76102
[109] Vignon-Clementel, I. E.; Figueroa, C.; Jansen, K.; Taylor, C., Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng., 5, 625-640 (2010)
[110] Bazilevs, Y.; Gohean, J.; Hughes, T.; Moser, R.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Eng., 45-46, 3534-3550 (2009) · Zbl 1229.74096
[111] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech., 3-37 (2008) · Zbl 1169.74015
[112] Quarteroni, A.; Veneziani, A.; Vergara, C., Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng., 193-252 (2016) · Zbl 1423.76528
[113] Curtiss, C. F.; Hirschfelder, J. O., Integration of stiff equations. Proc. Natl. Acad. Sci. USA, 3, 235 (1952) · Zbl 0046.13602
[114] Forti, D.; Dede’, L., Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES modeling in a high performance computing framework. Comput. Fluids, 168-182 (2015) · Zbl 1390.76149
[115] Tezduyar, T.; Sathe, S., Stabilization parameters in SUPG and PSPG formulations. J. Comput. Appl. Mech., 1, 71-88 (2003) · Zbl 1026.76032
[116] Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng., 1-4, 173-201 (2007) · Zbl 1169.76352
[117] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Long, C. C.; Marsden, A. L.; Schjodt, K., ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math. Models Methods Appl. Sci., 12, 2437-2486 (2014) · Zbl 1296.76113
[118] Quarteroni, A., Numerical Models for Differential Problems, vol. 16 (2017), Springer
[119] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[120] Xu, J.; Zikatanov, L., Algebraic multigrid methods. Acta Numer., 591-721 (2017) · Zbl 1378.65182
[121] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations (1999), Oxford University Press · Zbl 0931.65118
[122] Deparis, S.; Grandperrin, G.; Quarteroni, A., Parallel preconditioners for the unsteady Navier-Stokes equations and applications to hemodynamics simulations. Comput. Fluids, 253-273 (2014) · Zbl 1391.76887
[123] Arndt, D.; Bangerth, W.; Davydov, D.; Heister, T.; Heltai, L.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The deal.II finite element library: design, features, and insights. Comput. Math. Appl., 407-422 (2021) · Zbl 1524.65002
[124] Balay, S.; Abhyankar, S.; Adams, M. F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E. M.; Dalcin, L.; Dener, A.; Eijkhout, V.; Faibussowitsch, J.; Gropp, W. D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M. G.; Kong, F.; Kruger, S.; May, D. A.; McInnes, L. C.; Mills, R. T.; Mitchell, L.; Munson, T.; Roman, J. E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J., PETSc web page (2023)
[125] Schroeder, W.; Martin, K. M.; Lorensen, W. E., The Visualization Toolkit (2006), Kitware
[126] Schäling, B., The Boost C++ Libraries (2011), Boris Schäling
[127] (2023), SACADO Project Website
[128] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, vol. 5 (2012), Springer Science & Business Media
[129] LaDisa, J. F.J.; Dholakia, R. J.; Figueroa, C. A.; Vignon-Clementel, I. E.; Chan, F. P.; Samyn, M. M.; Cava, J. R.; Taylor, C. A.; Feinstein, J. A., Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit. Heart Dis., 5, 432-443 (2011)
[130] Wilson, N. M.; Ortiz, A. K.; Johnson, A. B., The vascular model repository: a public resource of medical imaging data and blood flow simulation results. J. Med. Devices, 4 (2013)
[131] Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D. A., An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput., 11, 1097-1112 (2008)
[132] Roney, C. H.; Bendikas, R.; Pashakhanloo, F.; Corrado, C.; Vigmond, E. J.; McVeigh, E. R.; Trayanova, N. A.; Niederer, S. A., Constructing a human atrial fibre atlas. Ann. Biomed. Eng., 233-250 (2021)
[133] Roney, C. H.; Bendikas, R.; Pashakhanloo, F.; Corrado, C.; Vigmond, E. J.; McVeigh, E. R.; Trayanova, N. A.; Niederer, S. A., Constructing a human atrial fibre atlas (2020)
[134] Fedele, M.; Quarteroni, A. M., Polygonal surface processing and mesh generation tools for numerical simulations of the complete cardiac function. Int. J. Numer. Methods Biomed. Eng. (2021)
[135] Tsakiris, A. G.; Gordon, D. A.; Padiyar, R.; Fréchette, D., Relation of mitral valve opening and closure to left atrial and ventricular pressure in the intact dog. Am. J. Physiol., H146-H151 (1978)
[136] Šmalcelj, A.; Gibson, D. G., Relation between mitral valve closure and early systolic function of the left ventricle. Heart, 436-442 (1985)
[137] Crawford, M. H.; Roldan, C. A., Quantitative assessment of valve thickness in normal subjects by transesophageal echocardiography. Am. J. Cardiol., 12, 1419-1423 (2001)
[138] Brachet, M. E.; Meiron, D. I.; Orszag, S. A.; Nickel, B.; Morf, R. H.; Frisch, U., Small-scale structure of the Taylor-Green vortex. J. Fluid Mech., 411-452 (1983) · Zbl 0517.76033
[139] (2011), (last visited: 16 November 2023)
[140] Fumagalli, I., A reduced 3D-0D FSI model of the aortic valve including leaflets curvature (2021), arXiv preprint
[141] F. Renzi, C. Vergara, M. Fedele, V. Giambruno, A. Quarteroni, G. Puppini, G.B. Luciani, Accurate and efficient 3D reconstruction of right heart shape and motion from multi-series cine-MRI, bioRxiv, https://doi.org/10.1101/2023.06.28.546872
[142] Korakianitis, T.; Shi, Y., Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech., 11, 1964-1982 (2006)
[143] This, A.; Boilevin-Kayl, L.; Fernández, M. A.; Gerbeau, J.-F., Augmented resistive immersed surfaces valve model for the simulation of cardiac hemodynamics with isovolumetric phases. Int. J. Numer. Methods Biomed. Eng., 3 (2020)
[144] Bakir, A. A.; Al Abed, A.; Stevens, M. C.; Lovell, N. H.; Dokos, S., A multiphysics biventricular cardiac model: simulations with a left-ventricular assist device. Front. Physiol., 1259 (2018)
[145] Alharbi, Y.; Al Abed, A.; Bakir, A. A.; Lovell, N. H.; Muller, D. W.; Otton, J.; Dokos, S., Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle. Comput. Biol. Med. (2022)
[146] Al-Azawy, M. G.; Turan, A.; Revell, A., Investigating the impact of non-Newtonian blood models within a heart pump. Int. J. Numer. Methods Biomed. Eng., 1 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.