×

Analysis and simulation of a nonlocal Gray-Scott model. (English) Zbl 1540.45016

This article presents a nonlocal Gray-Scott model posed on a bounded one-dimensional domain with Dirichlet and Neumann boundary conditions. The nonlocal operators are symmetric \(L^1\) convolution kernels that are also positive and spatially extended. The authors prove the existence of weak solutions for small time, and use a finite element method to investigate the effects of (exponential) nonlocal diffusion kernels on the formation of pulse solutions.

MSC:

45K05 Integro-partial differential equations
45G15 Systems of nonlinear integral equations
46N20 Applications of functional analysis to differential and integral equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
65R20 Numerical methods for integral equations

References:

[1] Abbaszadeh, M. and Dehghan, M., A reduced order finite difference method for solving space-fractional reaction-diffusion systems: The Gray-Scott model, Eur. Phys. J. Plus, 134 (2019), 620, doi:10.1140/epjp/i2019-12951-0.
[2] Abbaszadeh, M., Dehghan, M., and Navon, I. M., A POD reduced-order model based on spectral Galerkin method for solving the space-fractional Gray-Scott model with error estimate, Eng. Comput., 38 (2022), pp. 2245-2268, doi:10.1007/s00366-020-01195-5.
[3] Allen, E. J., Allen, L. J. S., and Gilliam, X., Dispersal and competition models for plants, J. Math. Biol., 34 (1996), pp. 455-481, doi:10.1007/BF00167944. · Zbl 0842.92026
[4] Aubin, J.-P., Analyse mathematique-un theoreme de compacite, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 256 (1963), 5042. · Zbl 0195.13002
[5] Avitabile, D., Coombes, S., and Lima, P. M., Numerical investigation of a neural field model including dendritic processing, J. Comput. Dyn., 7 (2020), 271. · Zbl 1452.65401
[6] Ball, P., Shapes: Nature’s Patterns: A Tapestry in Three Parts, Oxford University Press, Oxford, UK, 2009. · Zbl 1189.00005
[7] Baudena, M. and Rietkerk, M., Complexity and coexistence in a simple spatial model for arid savanna ecosystems, Theor. Ecol., 6 (2013), pp. 131-141, doi:10.1007/s12080-012-0165-1.
[8] Bennett, J. J. and Sherratt, J. A., Long-distance seed dispersal affects the resilience of banded vegetation patterns in semi-deserts, J. Theor. Biol., 481 (2019), pp. 151-161, doi:10.1016/j.jtbi.2018.10.002. · Zbl 1422.92183
[9] Brenner, S. C. and Scott, L. R., The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008. · Zbl 1135.65042
[10] Bullock, J. M., Mallada González, L., Tamme, R., Götzenberger, L., White, S. M., Pärtel, M., and Hooftman, D. A., A synthesis of empirical plant dispersal kernels, J. Ecol., 105 (2017), pp. 6-19, doi:10.1111/1365-2745.12666.
[11] Burkovska, O. and Gunzburger, M., On a nonlocal Cahn-Hilliard model permitting sharp interfaces, Math. Models Methods Appl. Sci., 31 (2021), pp. 1749-1786, doi:10.1142/S021820252150038X. · Zbl 1484.35352
[12] Cross, M. C. and Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), pp. 851-1112, doi:10.1103/RevModPhys.65.851. · Zbl 1371.37001
[13] Dhooge, A., Govaerts, W., and Kuznetsov, Y. A., MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29 (2003), pp. 141-164, doi:10.1145/779359.779362. · Zbl 1070.65574
[14] Doedel, E. J., Champneys, A. R., Dercole, F., Fairgrieve, T. F., Kuznetsov, Y. A., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., and Zhang, C., AUTO-07p: Continuation and Bifurcation Software for Ordinary Differential Equations, Concordia University, Montreal, Canada, 2007.
[15] Doelman, A., Eckhaus, W., and Kaper, T. J., Slowly modulated two-pulse solutions in the Gray-Scott model I: Asymptotic construction and stability, SIAM J. Appl. Math., 61 (2000), pp. 1080-1102, doi:10.1137/S0036139999354923. · Zbl 0979.35074
[16] Doelman, A., Eckhaus, W., and Kaper, T. J., Slowly modulated two-pulse solutions in the Gray-Scott model II: Geometric theory, bifurcations, and splitting dynamics, SIAM J. Appl. Math., 61 (2001), pp. 2036-2062, doi:10.1137/S0036139900372429. · Zbl 0989.35073
[17] Doelman, A., Gardner, R. A., and Kaper, T. J., Stability analysis of singular patterns in the 1D Gray-Scott model: A matched asymptotics approach, Phys. D, 122 (1998), pp. 1-36, doi:10.1016/S0167-2789(98)00180-8. · Zbl 0943.34039
[18] Doelman, A., Kaper, T. J., and Zegeling, P. A., Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), pp. 523-563, doi:10.1088/0951-7715/10/2/013. · Zbl 0905.35044
[19] Du, Q., Gunzburger, M., Lehoucq, R. B., and Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), pp. 667-696, doi:10.1137/110833294. · Zbl 1422.76168
[20] Du, Q., Gunzburger, M., Lehoucq, R. B., and Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Models Methods Appl. Sci., 23 (2013), pp. 493-540, doi:10.1142/S0218202512500546. · Zbl 1266.26020
[21] Du, Q. and Yin, X., A conforming DG method for linear nonlocal models with integrable kernels, J. Sci. Comput., 80 (2019), pp. 1913-1935, doi:10.1007/s10915-019-01006-0. · Zbl 1428.82037
[22] Ern, A. and Guermond, J.-L., Theory and Practice of Finite Elements, , Springer, New York, 2004. · Zbl 1059.65103
[23] Gray, P. and Scott, S., Autocatalytic reactions in the isothermal, continuous stirred tank reactor: Oscillations and instabilities in the system \(A+2B \rightarrow B;\,B \rightarrow C\), Chem. Eng. Sci., 39 (1984), pp. 1087-1097, doi:10.1016/0009-2509(84)87017-7.
[24] Han, C., Wang, Y.-L., and Li, Z.-Y., A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759, doi:10.1016/j.aml.2021.107759. · Zbl 1524.65653
[25] Hoyle, R. and Hoyle, R. B., Pattern Formation: An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006. · Zbl 1087.00001
[26] Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghton, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J., and Sims, D. W., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465 (2010), pp. 1066-1069, doi:10.1038/nature09116.
[27] Kolokolnikov, T. and Wei, J., On ring-like solutions for the Gray-Scott model: Existence, instability and self-replicating rings, European J. Appl. Math., 16 (2005), pp. 201-237. · Zbl 1085.35019
[28] Lee, K. J., McCormick, W. D., Ouyang, Q., and Swinney, H. L., Pattern formation by interacting chemical fronts, Science, 261 (1993), pp. 192-194, doi:10.1126/science.261.5118.192.
[29] Lee, K.-J., McCormick, W. D., Pearson, J. E., and Swinney, H. L., Experimental observation of self-replicating spots in a reaction-diffusion system, Nature, 369 (1994), pp. 215-218, doi:10.1038/369215a0.
[30] Levin, S. A., Muller-Landau, H. C., Nathan, R., and Chave, J., The ecology and evolution of seed dispersal: A theoretical perspective, Ann. Rev. Ecol. Evol. Syst., 34 (2003), pp. 575-604.
[31] Liu, Y., Fan, E., Yin, B., Li, H., and Wang, J., TT-M finite element algorithm for a two-dimensional space fractional Gray-Scott model, Comput. Math. Appl., 80 (2020), pp. 1793-1809, doi:10.1016/j.camwa.2020.08.011. · Zbl 1451.65150
[32] McGough, J. S. and Riley, K., Pattern formation in the Gray-Scott model, Nonlinear Anal. Real World Appl., 5 (2004), pp. 105-121, doi:10.1016/S1468-1218(03)00020-8. · Zbl 1097.35071
[33] Mengesha, T. and Du, Q., Analysis of a scalar nonlocal peridynamic model with a sign changing kernel, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 1415-1437. · Zbl 1278.45014
[34] Mengesha, T. and Du, Q., Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elasticity, 116 (2014), pp. 27-51. · Zbl 1297.74051
[35] Morgan, D. S., Doelman, A., and Kaper, T. J., Stationary periodic patterns in the 1D Gray-Scott model, Methods Appl. Anal., 7 (2000), pp. 105-150. · Zbl 0996.92041
[36] Morgan, D. S. and Kaper, T. J., Axisymmetric ring solutions of the 2D Gray-Scott model and their destabilization into spots, Phys. D, 192 (2004), pp. 33-62, doi:10.1016/j.physd.2003.12.012. · Zbl 1065.35133
[37] Nathan, R., Long-distance dispersal of plants, Science, 313 (2006), pp. 786-788.
[38] Nathan, R., Klein, E., Robledo-Arnuncio, J. J., and Revilla, E., Dispersal kernels: Review, in Dispersal Ecology and Evolution, Oxford University Press, Oxford, UK, 2012, pp. 186-210.
[39] Nathan, R., Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., and Tsoar, A., Mechanisms of long-distance seed dispersal, Trends Ecol. Evol., 23 (2008), pp. 638-647.
[40] Owolabi, K. M. and Karaagac, B., Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator, Chaos Solitons Fractals, 136 (2020), 109835, doi:10.1016/j.chaos.2020.109835. · Zbl 1489.74064
[41] Pearson, J. E., Complex patterns in a simple system, Science, 261 (1993), pp. 189-192, doi:10.1126/science.261.5118.189.
[42] Powell, J. A. and Zimmermann, N. E., Multiscale analysis of active seed dispersal contributes to resolving Reid’s paradox, Ecology, 85 (2004), pp. 490-506, doi:10.1890/02-0535.
[43] Pueyo, Y., Kefi, S., Alados, C. L., and Rietkerk, M., Dispersal strategies and spatial organization of vegetation in arid ecosystems, Oikos, 117 (2008), pp. 1522-1532, doi:10.1111/j.0030-1299.2008.16735.x.
[44] Pueyo, Y., Kéfi, S., Díaz-Sierra, R., Alados, C., and Rietkerk, M., The role of reproductive plant traits and biotic interactions in the dynamics of semi-arid plant communities, Theor. Popul. Biol., 78 (2010), pp. 289-297, doi:10.1016/j.tpb.2010.09.001. · Zbl 1403.92126
[45] Rankin, J., Avitabile, D., Baladron, J., Faye, G., and Lloyd, D. J. B., Continuation of localized coherent structures in nonlocal neural field equations, SIAM J. Sci. Comput., 36 (2014), pp. B70-B93, doi:10.1137/130918721. · Zbl 1312.92015
[46] Reynolds, A. M., Smith, A. D., Menzel, R., Greggers, U., Reynolds, D. R., and Riley, J. R., Displaced honey bees perform optimal scale-free search flights, Ecology, 88 (2007), pp. 1955-1961, doi:10.1890/06-1916.1.
[47] Reynolds, W. N., Pearson, J. E., and Ponce-Dawson, S., Dynamics of self-replicating patterns in reaction diffusion systems, Phys. Rev. Lett., 72 (1994), pp. 2797-2800, doi:10.1103/PhysRevLett.72.2797.
[48] Schmidt, H. and Avitabile, D., Bumps and oscillons in networks of spiking neurons, Chaos, 30 (2020), 033133, doi:10.1063/1.5135579.
[49] Sewalt, L. and Doelman, A., Spatially periodic multipulse patterns in a generalized Klausmeier-Gray-Scott model, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 1113-1163, doi:10.1137/16M1078756. · Zbl 1369.34067
[50] Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., James, A., Ahmed, M. Z., Brierley, A. S., Hindell, M. A., Morritt, D., Musyl, M. K., Righton, D., Shepard, E. L. C., Wearmouth, V. J., Wilson, R. P., Witt, M. J., and Metcalfe, J. D., Scaling laws of marine predator search behaviour, Nature, 451 (2008), pp. 1098-1102, doi:10.1038/nature06518.
[51] Uecker, H., Wetzel, D., and Rademacher, J. D. M., pde2path—a MATLAB package for continuation and bifurcation in 2D elliptic systems, Numer. Math. Theory Methods Appl., 7 (2014), pp. 58-106, doi:10.4208/nmtma.2014.1231nm. · Zbl 1313.65311
[52] van der Stelt, S., Doelman, A., Hek, G., and Rademacher, J. D. M., Rise and fall of periodic patterns for a generalized Klausmeier-Gray-Scott model, J. Nonlinear Sci., 23 (2013), pp. 39-95, doi:10.1007/s00332-012-9139-0. · Zbl 1270.35093
[53] Wang, T., Song, F., Wang, H., and Karniadakis, G. E., Fractional Gray-Scott model: Well-posedness, discretization, and simulations, Comput. Methods Appl. Mech. Engrg., 347 (2019), pp. 1030-1049, doi:10.1016/j.cma.2019.01.002. · Zbl 1440.35344
[54] Wei, J., Pattern formations in two-dimensional Gray-Scott model: Existence of single-spot solutions and their stability, Phys. D, 148 (2001), pp. 20-48, doi:10.1016/S0167-2789(00)00183-4. · Zbl 0981.35026
[55] Winfree, A. T., The Geometry of Biological Time, 2nd ed., , Springer, New York, 2001. · Zbl 1014.92001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.