×

Numerical analysis of the neutron multigroup \(SP_N\) equations. (Analyse numérique des équations de la neutronique \(SP_N\) multigroupe.) (English. French summary) Zbl 1478.65086

Summary: The multigroup neutron \(SP_N\) equations, which are an approximation of the neutron transport equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as a source problem or an eigenvalue problem. We study the resolution of those two problems with an \(H^1\)-conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior Penalty Galerkin method.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
35B45 A priori estimates in context of PDEs
82D75 Nuclear reactor theory; neutron transport
82M10 Finite element, Galerkin and related methods applied to problems in statistical mechanics
35Q49 Transport equations
35Q82 PDEs in connection with statistical mechanics

References:

[1] Alonso, Ana; Russo, Anahí D., Spectral approximation of variationally-posed eigenvalue problems by nonconforming methods, J. Comput. Appl. Math., 223, 1, 177-197 (2009) · Zbl 1156.65094 · doi:10.1016/j.cam.2008.01.008
[2] Babuška, Ivo; Osborn, John E., Handbook of numerical analysis, vol. II, 2, Eigenvalue problems, 645-785 (1991), North-Holland · Zbl 0875.65087
[3] Baudron, A.-M.; Lautard, Jean-Jacques, Simplified \({P_N}\) transport core calculations in the Apollo3 system
[4] Brezis, Haim, Functional analysis, Sobolev spaces and partial differential equations (2010), Springer · Zbl 1220.46002
[5] Ciarlet, Patrick Jr.; Giret, L.; Jamelot, Erell; Kpadonou, F. D., Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients, ESAIM, Math. Model. Numer. Anal., 52, 5, 2003-2035 (2018) · Zbl 1460.65137 · doi:10.1051/m2an/2018011
[6] Ciarlet, Patrick Jr.; Jamelot, Erell; Kpadonou, F. D., Domain decomposition methods for the diffusion equation with low-regularity solution, Comput. Math. Appl., 74, 10, 2369-2384 (2017) · Zbl 1402.65155 · doi:10.1016/j.camwa.2017.07.017
[7] Ciarlet, Philippe G., Linear and nonlinear functional analysis with applications (2013), Society for Industrial and Applied Mathematics · Zbl 1293.46001
[8] Dautray, Robert; Lions, Jacques-Louis, Analyse mathématique et calcul numérique pour les sciences et les techniques (1985), Masson · Zbl 0642.35001
[9] Di Pietro, Daniele Antonio; Ern, Alexandre, Mathematical aspects of discontinuous Galerkin methods, 69 (2011), Springer · Zbl 1231.65209
[10] Duderstadt, James J.; Hamilton, Louis J., Nuclear reactor analysis (1976), John Wiley & Sons, Inc.
[11] Ern, Alexandre; Guermond, Jean-Luc, Theory and practice of finite elements, 159 (2013), Springer · Zbl 1059.65103
[12] Gelbard, E. M., Application of spherical harmonics method to reactor problems (1960)
[13] Giret, L., Non-conforming domain decomposition for the multigroup neutron SPN equation (2018)
[14] Lautard, Jean-Jacques; Loubière, S.; Fedon-Magnaud, C., CRONOS: a modular computational system for neutronic core calculations (1992)
[15] Lautard, Jean-Jacques; Moller, J.-Y., Minaret, a deterministic neutron transport solver for nuclear core calculations
[16] Marchuk, Guriĭ I.; Lebedev, Vyacheslav I., Numerical methods in the theory of neutron transport (1986), Harwood Academic Pub.
[17] Nicaise, Serge; Sändig, Anna-Margarete, General interface problems. I, II, Math. Methods Appl. Sci., 17, 6, 395-429, 431-450 (1994) · Zbl 0824.35015 · doi:10.1002/mma.1670170602
[18] Osborn, John E., Spectral approximation for compact operators, Math. Comp., 29, 131, 712-725 (1975) · Zbl 0315.35068 · doi:10.1090/S0025-5718-1975-0383117-3
[19] Schneider, D., APOLLO \(3^{\text{®}} \) : CEA/DEN deterministic multi-purpose code for reactor physics analysis
[20] Takeda, T.; Ikeda, H., 3-D neutron transport benchmarks, Journal of Nuclear Science and Technology, 28, 7, 656-669 (1991) · doi:10.1080/18811248.1991.9731408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.