×

An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture. (English) Zbl 1442.74213

Summary: This work addresses an efficient global-local approach supplemented with predictor-corrector adaptivity applied to anisotropic phase-field brittle fracture. The phase-field formulation is used to resolve the sharp crack surface topology on the anisotropic/non-uniform local state in the regularized concept. To resolve the crack phase-field by a given single preferred direction, second-order structural tensors are imposed to both the bulk and crack surface density functions Accordingly, a split in tension and compression modes in anisotropic materials is considered. A global-local formulation is proposed, in which the full displacement/phase-field problem is solved on a lower (local) scale, while dealing with a purely linear elastic problem on an upper (global) scale. Robin-type boundary conditions are introduced to relax the stiff local response at the global scale and enhancing its stabilization. Another important aspect of this contribution is the development of an adaptive global-local approach, where a predictor-corrector scheme is designed in which the local domains are dynamically updated during the computation. To cope with different finite element discretizations at the interface between the two nested scales, a non-matching dual mortar method is formulated. Hence, more regularity is achieved on the interface. Several numerical results substantiate our developments.

MSC:

74R10 Brittle fracture
65Z05 Applications to the sciences

References:

[1] Michel, J.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Engrg., 172, 1, 109-143 (1999) · Zbl 0964.74054
[2] Fish, J., Practical Multiscaling (2014), John Wiley and Sons, Ltd.: John Wiley and Sons, Ltd. United Kingdom
[3] Hill, R., A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 4, 213-222 (1965)
[4] Lloberas-Valls, O.; Rixen, D. J.; Simone, A.; Sluys, L. J., Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials, Internat. J. Numer. Methods Engrg., 83, 1337-1366 (2012) · Zbl 1242.74138
[5] Fish, J.; Wagiman, A., Multiscale finite element method for a locally nonperiodic heterogeneous medium, Comput. Mech., 12, 3, 164-180 (1993) · Zbl 0779.73058
[6] Miehe, C.; Bayreuther, C., On multiscale fe analyses of heterogeneous structures: from homogenization to multigrid solvers, Internat. J. Numer. Methods Engrg., 71, 1135-1180 (2007) · Zbl 1194.74443
[7] Markovic, D.; Ibrahimbegovic, A., On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 193, 48, 5503-5523 (2004), Advances in Computational Plasticity · Zbl 1112.74530
[8] Zhang, S.; Oskay, C., Variational multiscale enrichment method with mixed boundary conditions for elasto-viscoplastic problems, Comput. Mech., 55, 4, 771-787 (2015) · Zbl 1334.74088
[9] Hautefeuille, M.; Colliat, J.-B.; Ibrahimbegovic, A.; Matthies, H.; Villon, P., A multi-scale approach to model localized failure with softening, Comput. Struct., 94-95, 83-95 (2012)
[10] Hughes, T. J.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1, 3-24 (1998), Advances in Stabilized Methods in Computational Mechanics · Zbl 1017.65525
[11] Gendre, L.; Allix, O.; Gosselet, P., A two-scale approximation of the Schur complement and its use for non-intrusive coupling, Internat. J. Numer. Methods Engrg., 87, 889-905 (2011) · Zbl 1242.74116
[12] Loehnert, S.; Belytschko, T., A multiscale projection method for macro/microcrack simulations, Internat. J. Numer. Methods Engrg., 71, 12, 1466-1482 (2007) · Zbl 1194.74436
[13] Gendre, L.; Allix, O.; Gosselet, P.; Comte, F., Non-intrusive and exact global/local techniques for structural problems with local plasticity, Comput. Mech., 44, 233-245 (2009) · Zbl 1165.74040
[14] Gerasimov, T.; Noii, N.; Allix, O.; De Lorenzis, L., A non-intrusive global/local approach applied to phase-field modeling of brittle fracture, Adv. Model. Simul. Eng. Sci. (2018)
[15] Hinojosa, J.; Allix, O.; Guidault, P.-A.; Cresta, P., Domain decomposition methods with nonlinear localization for the buckling and post-buckling analyses of large structures, Adv. Eng. Softw., 70, 13-24 (2014)
[16] Chevreuil, M.; Nouy, A.; Safatly, E., A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties, Comput. Methods Appl. Mech. Engrg., 255, 255-274 (2013) · Zbl 1297.65192
[17] Hecht, F.; Lozinski, A.; Pironneau, O., Numerical zoom and the schwarz algorithm, (Domain Decomposition Methods in Science and Engineering XVIII, vol. 70 (2009)), 63-73 · Zbl 1183.65162
[18] Park, K.; Felippa, C., A variational principle for the formulation of partitioned structural systems, Internat. J. Numer. Methods Engrg., 47, 395-418 (2000) · Zbl 0988.74032
[19] Park, K.; Felippa, C., A simple algorithm for localized construction of non-matching structural interfaces, Internat. J. Numer. Methods Engrg., 53, 9, 2117-2142 (2002) · Zbl 1169.74653
[20] Wriggers, P., Nonlinear Finite Elements (2008), Springer: Springer Berlin, Heidelberg, New York · Zbl 1153.74001
[21] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39, 4135-4195 (2005) · Zbl 1151.74419
[22] Wriggers, P.; Aldakheel, F.; Hudobivnik, B., Application of the virtual element method in mechanics, GAMM-Rundbriefe, 01/2019, 4-10 (2019), ISSN: 2196-3789
[23] Wriggers, P.; Aldakheel, F.; Marino, M.; Weissenfels, C., Computational mechanics in science and engineering – quo vadis, (Croatian academy of sciences and arts - Tehnicke Znanosti (RAD 536), vol. 19 (2018)), 1-32
[24] Wick, T.; Singh, G.; Wheeler, M., Fluid-filled fracture propagation using a phase-field approach and coupling to a reservoir simulator, SPE J., 21, 03, 981-999 (2016)
[25] Bangerth, W.; Hartmann, R.; Kanschat, G., dEal.II - a general purpose object oriented finite element library, ACM Trans. Math. Software, 33, 4, 24/1-24/27 (2007) · Zbl 1365.65248
[26] Wheeler, J.; Wheeler, M., Ipars, a new generation framework for petroleum reservoir simulation, technical reference (2019), http://csm.ices.utexas.edu/ipars/
[27] Magoules, F.; Roux, F. X.; Series, L., Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity, Comput. Methods Appl. Mech. Engrg., 195, 3742-3759 (2006) · Zbl 1126.74054
[28] Maday, Y.; Magoulés, F., Absorbing interface conditions for domain decomposition methods: A general presentation, Internat. J. Numer. Methods Fluids, 195, 3880-3900 (2006) · Zbl 1168.65423
[29] Francfort, G.; Marigo, J.-J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342 (1998) · Zbl 0966.74060
[30] Bourdin, B.; Francfort, G.; Marigo, J.-J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826 (2000) · Zbl 0995.74057
[31] Bourdin, B., Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[32] Hakim, V.; Karma, A., Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, 57, 2, 342-368 (2009) · Zbl 1421.74089
[33] Amor, H.; Marigo, J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[34] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, Internat. J. Numer. Methods Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[35] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng. Fract. Mech., 77, 18, 3625-3634 (2010)
[36] Hesch, C.; Weinberg, K., Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture, Internat. J. Numer. Methods Engrg., 99, 906-924 (2014) · Zbl 1352.74021
[37] Miehe, C.; Schänzel, L.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. part I. balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[38] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[39] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[40] Sargado, J.; Keilegavlen, E.; Berre, I.; Nordbotten, J., High-accuracy phase-field models for brittle fracture based on a new family of degradation functions, J. Mech. Phys. Solids (2017)
[41] Verhoosel, C. V.; De Borst, R., A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg., 96, 43-62 (2013) · Zbl 1352.74029
[42] Mikelić, A.; Wheeler, M. F.; Wick, T., A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium, SIAM Multiscale Model. Simul., 13, 1, 367-398 (2015) · Zbl 1317.74028
[43] Heider, Y.; Markert, B., A phase-field modeling approach of hydraulic fracture in saturated porous media, Mech. Res. Commun., 80, 38-46 (2017)
[44] Heider, Y.; Sun, W., A phase field framework for capillary-induced fracture in unsaturated porous media: Drying-induced vs. hydraulic cracking, Comput. Methods Appl. Mech. Engrg. (2019) · Zbl 1441.74205
[45] Wheeler, M.; Wick, T.; Wollner, W., An augmented-lagrangian method for the phase-field approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg., 271, 69-85 (2014) · Zbl 1296.65170
[46] Heister, T.; Wheeler, M. F.; Wick, T., A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach, Comput. Methods Appl. Mech. Engrg., 290, 466-495 (2015) · Zbl 1423.76239
[47] Farrell, P. E.; Maurini, C., Linear and nonlinear solvers for variational phase-field models of brittle fracture, Internat. J. Numer. Methods Engrg., 109, 648-667 (2017) · Zbl 07874318
[48] Heister, T.; Wick, T., Parallel solution, adaptivity, computational convergence, and open-source code of 2D and 3D pressurized phase-field fracture problems, PAMM, 18, 1, Article e201800353 pp. (2018), https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.201800353
[49] Paggi, M.; Reinoso, J., Revisiting the problem of a crack impinging on an interface:a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model, Comput. Methods Appl. Mech. Engrg., 321, 145-172 (2017) · Zbl 1439.74367
[50] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput. Methods Appl. Mech. Engrg., 341, 443-466 (2018) · Zbl 1440.74352
[51] Donath, F. A., Experimental study of shear failure in anisotropic rocks, GSA Bull., 72, 6, 985-989 (1961)
[52] Nasseri, M.; Mohanty, B., Fracture toughness anisotropy in granitic rocks, Int. J. Rock Mech. Min. Sci., 45, 2, 167-193 (2008)
[53] Takei, A.; Roman, B.; Bico, J.; Hamm, E.; Melo, F., Forbidden directions for the fracture of thin anisotropic sheets: An analogy with the wulff plot, Phys. Rev. Lett., 110, Article 144301 pp. (2013)
[54] Holzapfel, G. A.; Gasser, C.; Ogden, W., A new constitutive framework for arterial wall mechanics and a comperative study of material models, J. Elasticity, 61, 1-48 (2000) · Zbl 1023.74033
[55] Balzani, D.; Neff, P.; Schröder, J.; Holzapfel, G., A polyconvex framework for soft biological tissues. Adjustment to experimental data, Int. J. Solids Struct., 43, 6052-6070 (2006) · Zbl 1120.74632
[56] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M.-A., Phase field modeling of fracture in anisotropic brittle solids, Int. J. Non-Linear Mech., 97, 1-21 (2017)
[57] Nguyen, T. T.; Réthoré, J.; Baietto, M.-C., Phase field modelling of anisotropic crack propagation, Eur. J. Mech. A Solids, 65, 279-288 (2017) · Zbl 1406.74602
[58] Gültekin, O.; Dal, H.; Holzapfel, G. A., A phase-field approach to model fracture of arterial walls: Theory and finite element analysis, Comput. Methods Appl. Mech. Engrg., 312, 542-566 (2016), Phase Field Approaches to Fracture · Zbl 1439.74198
[59] Li, B.; Maurini, C., Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy, J. Mech. Phys. Solids, 125, 502-522 (2019) · Zbl 1474.74089
[60] Bleyer, J.; Alessi, R., Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Engrg. (2018) · Zbl 1440.74354
[61] Bryant, E. C.; Sun, W., A micromorphically regularized Cam-Clay model for capturing size-dependent anisotropy of geomaterials, Comput. Methods Appl. Mech. Engrg., 354, 56-95 (2019) · Zbl 1441.74124
[62] Heider, Y.; Reiche, S.; Siebert, P.; Markert, B., Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data, Eng. Fract. Mech., 202, 116-134 (2018)
[63] Wohlmuth, B., A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J. Numer. Anal., 38, 3, 989-1012 (2000) · Zbl 0974.65105
[64] Reis, F.; Pires, F. A., A mortar based approach for the enforcement of periodic boundary conditions on arbitrarily generated meshes, Comput. Methods Appl. Mech. Engrg., 274, 168-191 (2014) · Zbl 1296.74092
[65] Miehe, C.; Hofacker, M.; Schänzel, L.-M.; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. part II. brittle-to-ductile failure mode transition and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522 (2015) · Zbl 1423.74837
[66] Bourdin, B., Image segmentation with a finite element method, Math. Modelling Numer. Anal., 33, 2, 229-244 (1999) · Zbl 0947.65075
[67] Mang, K.; Wick, T., (Numerical Methods for Variational Phase-Field Fracture Problems. Numerical Methods for Variational Phase-Field Fracture Problems, Lecture notes at Leibniz University Hannover (2019))
[68] Wick, T., Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity, Comput. Mech., 57, 6, 1017-1035 (2016) · Zbl 1382.74130
[69] Schröder, J., Theoretische und algorithmische Konzepte zur phänomenologischen Beschreibung Anisotropen Materialverhaltens (1996), Institut für Mechanik und numerische Mechanik, Universität Hannover, (Ph.D. thesis)
[70] Ambrosio, L.; Tortorelli, V., Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence, Comm. Pure Appl. Math., 43, 999-1036 (1990) · Zbl 0722.49020
[71] Ambrosio, L.; Tortorelli, V., On the approximation of free discontinuity problems, Boll. Unione Mat. Ital. (9), 6, 105-123 (1992) · Zbl 0776.49029
[72] Kikuchi, N.; Oden, J., (Contact Problems in Elasticity. Contact Problems in Elasticity, Studies in Applied Mathematics (1988), Society for Industrial and Applied Mathematics (SIAM): Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA) · Zbl 0685.73002
[73] Kinderlehrer, D.; Stampacchia, G., (An Introduction to Variational Inequalities and their Applications. An Introduction to Variational Inequalities and their Applications, Classics in Applied Mathematics (2000), Society for Industrial and Applied Mathematics) · Zbl 0988.49003
[74] Bourdin, B.; Francfort, G.; Marigo, J.-J., The variational approach to fracture, J. Elasticity, 91, 5-148 (2008) · Zbl 1176.74018
[75] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: A robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Internat. J. Numer. Methods Engrg., 111, 9, 816-863 (2017) · Zbl 07867126
[76] Dittmann, M.; Aldakheel, F.; Schulte, J.; Wriggers, P.; Hesch, C., Variational phase-field formulation of non-linear ductile fracture, Comput. Methods Appl. Mech. Engrg., 342, 71-94 (2018) · Zbl 1440.74025
[77] Kienle, D.; Aldakheel, F.; Keip, M.-A., A finite-strain phase-field approach to ductile failure of frictional materials, Int. J. Solids Struct., 172, 147-162 (2019)
[78] Na, S.; Sun, W., Computational thermomechanics of crystalline rock, Part I: A combined multi-phase-field/crystal plasticity approach for single crystal simulations, Comput. Methods Appl. Mech. Engrg., 338, 657-691 (2018) · Zbl 1440.74222
[79] Mikelić, A.; Wheeler, M. F.; Wick, T., Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium, GEM Int. J. Geomath., 10, 1 (2019) · Zbl 1419.74216
[80] Noii, N.; Wick, T., A phase-field description for pressurized and non-isothermal propagating fractures, Comput. Methods Appl. Mech. Engrg., 351, 860-890 (2019) · Zbl 1441.74213
[81] Rice, J., Mathematical analysis in the mechanics of fracture, 3, 191-311 (1968), Academic Press: Academic Press New York, chapter 3 of fracture: An advanced treatise edition · Zbl 0214.51802
[82] Mikelić, A.; Wheeler, M. F.; Wick, T., A quasi-static phase-field approach to pressurized fractures, Nonlinearity, 28, 5, 1371-1399 (2015) · Zbl 1316.35287
[83] Lee, S.; Wheeler, M. F.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Engrg., 305, 111-132 (2016) · Zbl 1425.74419
[84] Aldakheel, F., Mechanics of Nonlocal Dissipative Solids: Gradient Plasticity and Phase Field Modeling of Ductile Fracture (2016), Institute of Applied Mechanics (CE), Chair I, University of Stuttgart, http://dx.doi.org/10.18419/opus-8803
[85] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified gurson-type plasticity model at finite strains: Formulation, numerical analysis and phase-field coupling, Comput. Mech., 62, 815-833 (2018) · Zbl 1459.74024
[86] Aldakheel, F.; Mauthe, S.; Miehe, C., Towards phase field modeling of ductile fracture in gradient-extended elastic-plastic solids, Proc. Appl. Math. Mech., 14, 411-412 (2014)
[87] Aldakheel, F.; Hudobivnik, B.; Wriggers, P., Virtual element formulation for phase-field modeling of ductile fracture, Int. J. Multiscale Comput. Eng., 17, 2, 181-200 (2019)
[88] Gosselet, P.; Rey, C., Non-overlapping domain decomposition methods in structural mechanics, Arch. Comput. Methods Eng., 13, 515-572 (2006) · Zbl 1171.74041
[89] Mandel, J., Balancing domain decomposition, Commun. Appl. Numer. Methods, 9, 4, 233-241 (1993) · Zbl 0796.65126
[90] Farhat, C.; Roux, F., A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32, 1205-1227 (1991) · Zbl 0758.65075
[91] Song, Y.; Youn, S.; Park, K., A gap element for treating non-matching discrete interfaces, Internat. J. Numer. Methods Engrg., 56, 3, 551-563 (2015) · Zbl 1326.74010
[92] Farhat, C.; Macedo, A.; Lesoinne, M.; Roux, F.-X.; Magoulés, F.; Bourdonnaie, A. D.L., Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 184, 213-239 (2000) · Zbl 0979.76046
[93] Gander, M.; Halpern, L.; Magoules, F., An optimized schwarz method with two-sided Robin transmission conditions for the Helmholtz equation, Internat. J. Numer. Methods Fluids, 55, 163-175 (2007) · Zbl 1125.65114
[94] Mota, A.; Tezaur, I.; Alleman, C., The Schwarz alternating method in solid mechanics, Comput. Methods Appl. Mech. Engrg., 319, 19-51 (2017) · Zbl 1439.74450
[95] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1987), North-Holland: North-Holland Amsterdam [u.a.]
[96] MATLAB, P. G., Version 9.5.0.944444 (R2018b) (2018), The MathWorks Inc.: The MathWorks Inc. Natick, Massachusetts
[97] Chapman, S. J., Fortran 90/95 for Scientists and Engineers (2003), McGraw-Hill, Inc.: McGraw-Hill, Inc. New York, NY, USA
[98] Mesgarnejad, A.; Bourdin, B.; Khonsari, M., Validation simulations for the variational approach to fracture, Comput. Methods Appl. Mech. Engrg., 290, 420-437 (2015) · Zbl 1423.74960
[99] Unger, J. F.; Eckardt, S.; Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method, Comput. Methods Appl. Mech. Engrg., 196, 41, 4087-4100 (2007) · Zbl 1173.74387
[100] Wick, T., An error-oriented Newton/inexact augmented Lagrangian approach for fully monolithic phase-field fracture propagation, SIAM J. Sci. Comput., 39, 4, B589-B617 (2017) · Zbl 1403.74131
[101] Wohlmuth, B., A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations, ESAIM Math. Model. Numer. Anal., 36, 6, 995-1012 (2002) · Zbl 1024.65111
[102] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structure (2014), John Wiley and Sons, Ltd.: John Wiley and Sons, Ltd. United Kingdom
[103] Khoromskij, B.; Wittum, G., Robust Interface Reduction for Highly Anisotropic Elliptic Equations, 140-156 (1998), Springer-Verlag Berlin Heidelberg · Zbl 0926.65131
[104] Deparis, S.; Discacciati, M.; Fourestey, G.; Quarteroni, A., Heterogeneous domain decomposition methods for fluid-structure interaction problems, (Domain Decomposition Methods in Science and Engineering XVI. Domain Decomposition Methods in Science and Engineering XVI, Lecture Notes in Computational Science and Engineering, vol. 55 (2007)), 41-52
[105] Greer, N.; Loisel, S., The optimised Schwarz method and the two-Lagrange multiplier method for heterogeneous problems in general domains with two general subdomains, Numer. Algorithms, 69, 737-762 (2015) · Zbl 1327.65262
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.