×

Multiscale analysis of high damping composites using the finite cell and the mortar method. (English) Zbl 1535.74047

Summary: Metal lattice structures filled with a damping material such as polymer can exhibit high stiffness and good damping properties. Mechanical simulations of parts made from these composites can however require a large modeling and computational effort because relevant features such as complex geometries need to be represented on multiple scales. The finite cell method (FCM) and numerical homogenization are potential remedies for this problem. Moreover, if the microstructures are placed in between the components of assemblies for vibration reduction, a modified mortar technique can further increase the efficiency of the complete simulation process. With this method, it is possible to discretize the components separately and to integrate the viscoelastic behavior of the composite damping layer into their weak coupling. This paper provides a multiscale computational material design framework for such layers, based on FCM and the modified mortar technique. Its efficiency even in the case of complex microstructures is demonstrated in numerical studies. Therein, computational homogenization is first performed on various microstructures before the resulting effective material parameters are used in larger-scale simulation models to investigate their effect and to verify the employed methods.

MSC:

74E30 Composite and mixture properties
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Balch, S. P. and Lakes, R. S., High vibration damping in in situ In-Zn composites, Funct. Mater. Lett.8(5) (2015) 1550059, https://doi.org/10.1142/S1793604715500599.
[2] Bolmsvik, Å. and Brandt, A., Damping assessment of light wooden assembly with and without damping material, Eng. Struct.49 (2013) 434-447, https://doi.org/10.1016/j.engstruct.2012.11.026.
[3] Cook, L. S. and Lakes, R. S., Damping at high homologous temperature in pure Cd, In, Pb, and Sn, Scr. Metall. Mater.32(5) (1995) 773-777, https://doi.org/10.1016/0956-716X(95)91601-K.
[4] Brodt, M. and Lakes, R. S., Composite materials which exhibit high stiffness and high viscoelastic damping, J. Compos. Mater.29(14) (1995) 1823-1833, https://doi.org/10.1177/002199839502901402.
[5] Dooris, A., Lakes, R. S., Myers, B. and Stephens, N., High damping indium-tin alloys, Mech. Time-Depend. Mater.3(4) (1999) 305-318, https://doi.org/10.1023/A:1009872603383.
[6] Kim, H. J., Swan, C. C. and Lakes, R. S., Computational studies on high-stiffness, high-damping SiC-InSn particulate reinforced composites, Int. J. Solids Struct.39(23) (2002) 5799-5812, https://doi.org/10.1016/S0020-7683(02)00404-3. · Zbl 1015.74517
[7] Ludwigson, M. N., Lakes, R. S. and Swan, C. C., Damping and stiffness of particulate SiC-InSn composite, J. Compos. Mater.36(19) (2002) 2245-2254, https://doi.org/10.1177/0021998302036019291.
[8] DGNB, DGNB System: New Construction, Buildings Criteria Set, 1st international edn. (Deutsche Gesellschaft für Nachhaltiges Bauen [German Sustainable Building Council] — DGNB e.V., Stuttgart, Germany, 2020).
[9] Lu, H., Wang, X., Zhang, T., Cheng, Z. and Fang, Q., Design, fabrication, and properties of high damping metal matrix composites — A review, Materials2(3) (2009) 958-977, https://doi.org/10.3390/ma2030958.
[10] Siva Prasad, D. and Shoba, C., Damping behavior of metal matrix composites, Trans. Indian Inst. Met.68(2) (2015) 161-167, https://doi.org/10.1007/s12666-014-0462-z.
[11] Lavernia, E. J., Perez, R. J. and Zhang, J., Damping behavior of discontinuously reinforced ai alloy metal-matrix composites, Metall. Mater. Trans. A26(11) (1995) 2803-2818, https://doi.org/10.1007/BF02669639.
[12] Wei, J. N., Cheng, H. F., Zhang, Y. F., Han, F. S., Zhou, Z. C. and Shui, J. P., Effects of macroscopic graphite particulates on the damping behavior of commercially pure aluminum, Mater. Sci. Eng. A325(1-2) (2002) 444-453, https://doi.org/10.1016/S0921-5093(01)01535-0.
[13] Wu, G. H., Dou, Z. Y., Jiang, L. T. and Cao, J. H., Damping properties of aluminum matrix-fly ash composites, Mater. Lett.60(24) (2006) 2945-2948, https://doi.org/10.1016/j.matlet.2006.02.018.
[14] Sudarshan and Surappa, M. K., Synthesis of fly ash particle reinforced A356 Al composites and their characterization, Mater. Sci. Eng. A480(1-2) (2008) 117-124, https://doi.org/10.1016/j.msea.2007.06.068.
[15] Wang, W. G., Li, C., Li, Y. L., Wang, X. P. and Fang, Q. F., Damping properties of Li5La3Ta2O12 particulates reinforced aluminum matrix composites, Mater. Sci. Eng. A518(1-2) (2009) 190-193, https://doi.org/10.1016/j.msea.2009.04.002.
[16] Chen, Y. S., Hsu, T. J. and Chen, S. I., Vibration damping characteristics of laminated steel sheet, Metall. Trans. A22(3) (1991) 653-656, https://doi.org/10.1007/BF02670287.
[17] Chang, S. H., Kim, P. J., Lee, D. G. and Choi, J. K., Steel-composite hybrid headstock for high-precision grinding machines, Compos. Struct.53(1) (2001) 1-8, https://doi.org/10.1016/S0263-8223(00)00173-2.
[18] Kari, L., Lindgren, K., Feng, L. and Nilsson, A., Constrained polymer layers to reduce noise: Reality or fiction? — An experimental inquiry into their effectiveness, Polym. Test.21(8) (2002) 949-958, https://doi.org/10.1016/S0142-9418(02)00041-7.
[19] Jaouen, L., Brouard, B., Atalla, N. and Langlois, C., A simplified numerical model for a plate backed by a thin foam layer in the low frequency range, J. Sound Vib.280(3-5) (2005) 681-698, https://doi.org/10.1016/j.jsv.2003.12.038.
[20] Amichi, K., Atalla, N. and Ruokolainen, R., A new 3D finite element sandwich plate for predicting the vibroacoustic response of laminated steel panels, Finite Elem. Anal. Des.46(12) (2010) 1131-1145, https://doi.org/10.1016/j.finel.2010.07.002.
[21] Altan, M., Bayraktar, M. and Yavuz, B., Manufacturing polymer/metal macro-composite structure for vibration damping, Int. J. Adv. Manuf. Technol.86(5-8) (2016) 2119-2126, https://doi.org/10.1007/s00170-015-8259-8.
[22] Salari-Sharif, L., Schaedler, T. A. and Valdevit, L., Hybrid hollow microlattices with unique combination of stiffness and damping, Trans. ASME, J. Eng. Mater. Technol.140(3) (2018) 031003, https://doi.org/10.1115/1.4038672.
[23] Andreasen, C. S., Andreassen, E., Jensen, J. S. and Sigmund, O., On the realization of the bulk modulus bounds for two-phase viscoelastic composites, J. Mech. Phys. Solids63(1) (2014) 228-241, https://doi.org/10.1016/j.jmps.2013.09.007.
[24] Gibiansky, L. V. and Lakes, R., Bounds on the complex bulk modulus of a two-phase viscoelastic composite with arbitrary volume fractions of the components, Mech. Mater.16(3) (1993) 317-331, https://doi.org/10.1016/0167-6636(93)90060-5.
[25] Gibiansky, L. V. and Lakes, R., Bounds on the complex bulk and shear moduli of a two-dimensional two-phase viscoelastic composite, Mech. Mater.25(2) (1997) 79-95, https://doi.org/10.1016/S0167-6636(96)00046-4.
[26] Milton, G. W. and Berryman, J. G., On the effective viscoelastic moduli of two-phase media. II. Rigorous bounds on the complex shear modulus in three dimensions, Proc. R. Soc. A, Math. Phys. Eng. Sci.453(1964) (1997) 1849-1880, https://doi.org/10.1098/rspa.1997.0100. · Zbl 0934.74061
[27] Shimizu, K., Malmos, K., Holm, A. H., Pedersen, S. U., Daasbjerg, K. and Hinge, M., Improved adhesion between PMMA and stainless steel modified with PMMA brushes, ACS Appl. Mater. Interfaces6(23) (2014) 21308-21315, https://doi.org/10.1021/am5062823.
[28] Carraturo, M., Alaimo, G., Marconi, S., Negrello, E., Sgambitterra, E., Maletta, C., Reali, A. and Auricchio, F., Experimental and numerical evaluation of mechanical properties of 3D-printed stainless steel 316L lattice structures, J. Mater. Eng. Perform. (2021), https://doi.org/10.1007/s11665-021-05737-w.
[29] Korshunova, N., Jomo, J., Lékó, G., Reznik, D., Balàzs, P. and Kollmannsberger, S., Image-based material characterization of complex microarchitectured additively manufactured structures, Comput. Math. Appl.80(11) (2020) 2462-2480, https://doi.org/10.1016/j.camwa.2020.07.018. · Zbl 1524.65829
[30] Korshunova, N., Alaimo, G., Hosseini, S. B., Carraturo, M., Reali, A., Niiranen, J., Auricchio, F., Rank, E. and Kollmannsberger, S., Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures, Additive Manuf.41 (2021) 101949, https://doi.org/10.1016/j.addma.2021.101949.
[31] Paolini, A., Kollmannsberger, S., Rank, E., Horger, T. and Wohlmuth, B., A mortar formulation including viscoelastic layers for vibration analysis, Comput. Mech.63(1) (2019) 23-33, https://doi.org/10.1007/s00466-018-1582-9. · Zbl 1469.74103
[32] Cremer, L. and Heckl, M., Structure-Borne Sound (Springer, Berlin, Heidelberg, 1988), https://doi.org/10.1007/978-3-662-10121-6.
[33] Casati, R., Lemke, J. and Vedani, M., Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting, J. Mater. Sci. Technol.32(8) (2016) 738-744, https://doi.org/10.1016/j.jmst.2016.06.016.
[34] EOS GmbH, Material data sheet of EOS StainlessSteel 316L, June 2014.
[35] Jung, S. S., Kim, Y. T., Lee, Y. B., Shin, S. H., Kim, D. and Kim, H. C., Measurement of the resonance frequency, the loss factor, and the dynamic Young’s modulus in structural steel and polycarbonate by using an acoustic velocity sensor, J. Korean Phys. Soc.49(5) (2006) 1961-1966.
[36] Jung, S. S., Jeon, B. S., Jin, J. and Lee, Y. B., Measurement of the loss factor and the Young’s modulus in acrylonitrile butadiene styrene and polymethyl methacrylate by using an acoustic wave generator, Int. J. Precis. Eng. Manuf.15(12) (2014) 2493-2497, https://doi.org/10.1007/s12541-014-0619-z.
[37] Jung, S. S., Lee, Y. B., Jeon, B. S. and Shin, S. H., Measurement of the loss factor and the Young’s modulus in structural steel by using a laser beam reflection method, J. Korean Phys. Soc.65(7) (2014) 1024-1027, https://doi.org/10.3938/jkps.65.1024.
[38] Shin, S. H., Lee, Y. B., Jung, S. S. and Lee, D. H., Determination of the Young’s modulus and loss factor by acoustic bending vibration methods, Key Eng. Mater.297-300 (2005) 1958-1961, https://doi.org/10.4028/www.scientific.net/KEM.297-300.1958.
[39] Corn, S., Dupuy, J.-S., Ienny, P. and Daridon, L., Vibration analysis techniques for detecting filler-matrix decohesion in composites, Rev. Compos. Mater. Avances22(1) (2012) 77-90, https://doi.org/10.3166/RCMA.22.77-90.
[40] Fu, W. and Chung, D. D. L., Vibration reduction ability of polymers, particularly polymethylmethacrylate and polytetrafluoroethylene, Polym. Polym. Compos.9(6) (2001) 423-426, https://doi.org/10.1177/096739110100900607.
[41] Rand, O. and Rovenski, V., Analytical Methods in Anisotropic Elasticity: With Symbolic Computational Tools (Birkhäuser, Boston, 2005), https://doi.org/10.1007/b138765. · Zbl 1092.74002
[42] Radovitzky, R., Module 3: Constitutive Equations. Lecture notes in Structural Mechanics (16.20) (Massachusetts Institute of Technology, 2013), https://stuff.mit.edu/afs/athena/course/16/16.20/homepage/3_Constitutive/Constitutive_files/module_3_no_solutions.pdf. (accessed 12 February 2021).
[43] D. H. Pahr, Experimental and Numerical Investigations of Perforated FRP-Laminates, Fortschritt-Berichte VDI. Reihe 18, Mechanik/Bruchmechanik, Vol. 284 (VDI-Verlag, 2003).
[44] Sanchez-Palencia, E. and Zaoui, A. (eds.), Homogenization Techniques for Composite Media, , Vol. 272 (Springer-Verlag, Berlin, Heidelberg, 1987), https://doi.org/10.1007/3-540-17616-0. · Zbl 0619.00027
[45] Wassermann, B., Kollmannsberger, S., Bog, T. and Rank, E., From geometric design to numerical analysis: A direct approach using the finite cell method on constructive solid geometry, Comput. Math. Appl.74(7) (2017) 1703-1726, https://doi.org/10.1016/j.camwa.2017.01.027. · Zbl 1410.65460
[46] Parvizian, J., Düster, A. and Rank, E., Finite cell method: h- and p-extension for embedded domain problems in solid mechanics, Comput. Mech.41(1) (2007) 121-133, https://doi.org/10.1007/s00466-007-0173-y. · Zbl 1162.74506
[47] Düster, A., Rank, E. and Szabó, B., The p-version of the finite element and finite cell methods, in Encyclopedia of Computational Mechanics, 2nd edn., eds. Stein, E., Borst, R. and Hughes, T. J. R. (John Wiley & Sons, 2017), pp. 1-35, https://doi.org/10.1002/9781119176817.ecm2003g.
[48] Elhaddad, M., Zander, N., Bog, T., Kudela, L., Kollmannsberger, S., Kirschke, J., Baum, T., Ruess, M. and Rank, E., Multi-level hp-finite cell method for embedded interface problems with application in biomechanics, Int. J. Numer. Methods Biomed. Eng.34(4) (2018) e2951, https://doi.org/10.1002/cnm.2951.
[49] Bog, T., Zander, N., Kollmannsberger, S. and Rank, E., Weak imposition of frictionless contact constraints on automatically recovered high-order, embedded interfaces using the finite cell method, Comput. Mech.61(4) (2018) 385-407, https://doi.org/10.1007/s00466-017-1464-6. · Zbl 1453.74066
[50] Gross, D. and Seelig, T., Fracture Mechanics — With an Introduction to Micromechanics, 3rd edn. (Springer, Cham, 2018). · Zbl 1110.74001
[51] Ben Belgacem, F., The mortar finite element method with Lagrange multipliers, Numer. Math.84(2) (1999) 173-197, https://doi.org/10.1007/s002110050468. · Zbl 0944.65114
[52] Casadei, F., Gabellini, E., Fotia, G., Maggio, F. and Quarteroni, A., A mortar spectral/finite element method for complex 2D and 3D elastodynamic problems, Comput. Methods Appl. Mech. Eng.191(45) (2002) 5119-5148, https://doi.org/10.1016/S0045-7825(02)00294-3.
[53] Bathe, K. J., Finite Element Procedures, 2nd edn. (K.J. Bathe, Watertown, MA, 2014). · Zbl 1326.65002
[54] Babuska, I., The finite element method with penalty, Math. Comput.27(122) (1973) 221-228, https://doi.org/10.1090/S0025-5718-1973-0351118-5. · Zbl 0299.65057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.