×

On the efficient enforcement of uniform traction and mortar periodic boundary conditions in computational homogenisation. (English) Zbl 1506.74329

Summary: In this contribution, the enforcement of uniform traction (UT) and periodic boundary (PB) conditions on arbitrarily generated meshes is analysed in detail, and the derivation of the associated macroscopic consistent tangent operators is described. Two different approaches to impose these boundary conditions are examined: the saddle point solution (SPS) resulting from the Lagrange multiplier method and the condensation method (CM). The numerical treatment required to implement the UT and the PB conditions with both methods is presented for rectangular and cuboidal representative volume elements (RVEs). It is shown that the UT condition only needs rigid body motion to be prescribed since it intrinsically restricts rigid body rotations in the finite strain setting. The application of the SPS to the UT condition leads to a formulation where the Lagrange multipliers are the homogenised stresses, and the macroscopic consistent tangent operator for FE\(^2\) simulations can be directly derived. The enforcement of PB conditions on non-conforming meshes with the mortar approach is also described for the CM and SPS. The need to modify the Lagrange multiplier dual interpolation functions is emphasised to avoid over-constraints. The proposed implementation recovers the conventional PB condition solution when conforming meshes are used. The computational performance of both methods is compared in terms of time and memory requirements. As anticipated, the results obtained for each boundary condition do not depend on the enforcement method employed. With the direct solvers employed, the SPS is more efficient despite increasing the number of unknowns in the linear system of equations.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics

Software:

Neper
Full Text: DOI

References:

[1] Kouznetsova, V., Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials (2002), Technische Universiteit Eindhoven, (Ph.D. thesis)
[2] Reis, F., Multi-Scale Modelling and Analysis of Heterogeneous Solids at Finite Strains (2014), Faculdade de Engenharia da Universidade do Porto, (Ph.D. thesis)
[3] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Engrg., 157, 69-94 (1998), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782597002181 · Zbl 0954.74079
[4] Michel, J.; Moulinec, H.; Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Engrg., 172, 109-143 (1999), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782598002278 · Zbl 0964.74054
[5] Rocha, F. F.; Blanco, P. J.; Sánchez, P. J.; Feijóo, R. A., Multi-scale modelling of arterial tissue: Linking networks of fibres to continua, Comput. Methods Appl. Mech. Engrg., 341, 740-787 (2018), URL: https://doi.org/10.1016/j.cma.2018.06.031 · Zbl 1440.74232
[6] Guedes, J. M.; Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput. Methods Appl. Mech. Engrg., 83, 143-198 (1990) · Zbl 0737.73008
[7] Smit, R.; Brekelmans, W.; Meijer, H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Comput. Methods Appl. Mech. Engrg., 155, 181-192 (1998) · Zbl 0967.74069
[8] Feyel, F.; Chaboche, J.-L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Methods Appl. Mech. Engrg., 183, 309-330 (2000) · Zbl 0993.74062
[9] Kouznetsova, V.; Brekelmans, W.; Baaijens, F., Approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27, 37-48 (2001) · Zbl 1005.74018
[10] Miehe, C.; Schröder, J.; Schotte, J., Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials, Comput. Methods Appl. Mech. Engrg., 171, 387-418 (1999) · Zbl 0982.74068
[11] Miehe, C.; Schotte, J.; Schröder, J., Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains, Comput. Mater. Sci., 16, 372-382 (1999)
[12] Miehe, C.; Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strains, Arch. Appl. Mech., 72, 300-317 (2002) · Zbl 1032.74010
[13] Miehe, C., Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy, Comput. Methods Appl. Mech. Engrg., 192, 559-591 (2003) · Zbl 1091.74530
[14] de Souza Neto, E.; Feijóo, R., Variational foundations of multi-scale constitutive models of solid:: Small and large strain kinematical formulation (2006), LNCC R&D Report 16/2006, LNCC
[15] de Souza Neto, E.; Feijóo, R., Variational foundations of large strain multiscale solid constitutive models: Kinematical formulation, (Júnior, M. V.; de Souza Neto, E.; Muñoz Rojas, P. A., Advanced Computational Materials Modeling: From Classical To Multiscale Techniques (2010), Wiley-VCH)
[16] Blanco, P. J.; Sánchez, P. J.; de Souza Neto, E. A.; Feijóo, R. A., Variational foundations and generalized unified theory of RVE-based multiscale models, Arch. Comput. Methods Eng., 23, 191-253 (2016), URL: http://link.springer.com/10.1007/s11831-014-9137-5 · Zbl 1348.74003
[17] Geers, M.; Kouznetsova, V.; Brekelmans, W., Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., 234, 2175-2182 (2010), URL: http://www.sciencedirect.com/science/article/pii/S0377042709005536 · Zbl 1402.74107
[18] Saeb, S.; Steinmann, P.; Javili, A., Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound, Appl. Mech. Rev., 68, Article 050801 pp. (2016)
[19] Matouš, K.; Geers, M. G.; Kouznetsova, V. G.; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys., 330, 192-220 (2017), URL: http://dx.doi.org/10.1016/j.jcp.2016.10.070
[20] Kouznetsova, V.; Geers, M.; Brekelmans, W., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Comput. Methods Appl. Mech. Engrg., 193, 5525-5550 (2004) · Zbl 1112.74469
[21] Matsui, K.; Terada, K.; Yuge, K., Two-scale finite element analysis of heterogeneous solids with periodic microstructures, Comput. Struct., 82, 593-606 (2004)
[22] Rodrigues Lopes, I. A.; Andrade Pires, F. M.; Reis, F. J.P., A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains, Comput. Mech., 61, 157-180 (2018), URL: http://link.springer.com/10.1007/s00466-017-1472-6 · Zbl 1459.74174
[23] Somer, D. D.; de Souza Neto, E.a.; Dettmer, W. G.; Perić, D., A sub-stepping scheme for multi-scale analysis of solids, Comput. Methods Appl. Mech. Engrg., 198, 1006-1016 (2009) · Zbl 1229.74119
[24] Reis, F.; Andrade Pires, F. M., An adaptive sub-incremental strategy for the solution of homogenization-based multi-scale problems, Comput. Methods Appl. Mech. Engrg., 257, 164-182 (2013) · Zbl 1286.74085
[25] Hernández, J.; Oliver, J.; Huespe, A.; Caicedo, M.; Cante, J., High-performance model reduction techniques in computational multiscale homogenization, Comput. Methods Appl. Mech. Engrg., 276, 149-189 (2014) · Zbl 1423.74785
[26] Fritzen, F.; Hodapp, M.; Leuschner, M., GPU Accelerated computational homogenization based on a variational approach in a reduced basis framework, Comput. Methods Appl. Mech. Engrg., 278, 186-217 (2014) · Zbl 1423.74881
[27] Fritzen, F.; Leuschner, M., Nonlinear reduced order homogenization of materials including cohesive interfaces, Comput. Mech., 56, 131-151 (2015) · Zbl 1329.74240
[28] Pinto Carvalho, R.; Rodrigues Lopes, I. A.; Andrade Pires, F. M., Prediction of the yielding behaviour of ductile porous materials through computational homogenization, Eng. Comput., 35, 604-621 (2018), URL: http://www.emeraldinsight.com/doi/10.1108/EC-03-2017-0069
[29] Tenreiro Vieira, R.; de Bortoli, D.; Vieira de Carvalho, M.; Andrade Pires, F., The role of elastic anisotropy on the macroscopic constitutive response and yield onset of cubic oligo- and polycrystals, Int. J. Plast., 121, 153-200 (2019), URL: https://www.sciencedirect.com/science/article/pii/S0749641919302177
[30] Amstutz, S.; Giusti, S. M.; Novotny, A. A.; de Souza Neto, E. A., Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures, Internat. J. Numer. Methods Engrg., 84, 733-756 (2010) · Zbl 1202.74132
[31] Coelho, P. G.; Cardoso, J. B.; Fernandes, P. R.; Rodrigues, H. C., Parallel computing techniques applied to the simultaneous design of structure and material, Adv. Eng. Softw., 42, 219-227 (2011), URL: http://dx.doi.org/10.1016/j.advengsoft.2010.10.003 · Zbl 1308.74126
[32] Kato, J.; Yachi, D.; Terada, K.; Kyoya, T., Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis, Struct. Multidiscip. Optim., 49, 595-608 (2014)
[33] Xia, L.; Breitkopf, P., Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework, Comput. Methods Appl. Mech. Engrg., 278, 524-542 (2014), URL: http://dx.doi.org/10.1016/j.cma.2014.05.022 · Zbl 1423.74770
[34] Ferrer, A.; Oliver, J.; Cante, J. C.; Lloberas-Valls, O., Vademecum-based approach to multi-scale topological material design, Adv. Model. Simul. Eng. Sci., 3, 23 (2016)
[35] Bessa, M.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D. W.; Brinson, C.; Chen, W.; Liu, W. K., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320, 633-667 (2017), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782516314803 · Zbl 1439.74014
[36] Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches, Int. J. Solids Struct., 37, 2285-2311 (2000) · Zbl 0991.74056
[37] Kanit, T.; Forest, S.; Galliet, I.; Mounoury, V.; Jeulin, D., Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., 40, 3647-3679 (2003) · Zbl 1038.74605
[38] Gitman, I.; Askes, H.; Sluys, L., Representative volume: Existence and size determination, Eng. Fract. Mech., 74, 2518-2534 (2007)
[39] Kaczmarczyk, Ł.; Pearce, C. J.; Bićanić, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization, Internat. J. Numer. Methods Engrg., 74, 506-522 (2008), URL: http://doi.wiley.com/10.1002/nme.2188 · Zbl 1159.74403
[40] Ainsworth, M., Essential boundary conditions and multi-point constraints in finite element analysis, Comput. Methods Appl. Mech. Engrg., 190, 6323-6339 (2001), URL: https://linkinghub.elsevier.com/retrieve/pii/S0045782501002365 · Zbl 0992.65128
[41] Nguyen, V.-D.; Wu, L.; Noels, L., Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method, Comput. Mech., 59, 483-505 (2017), URL: http://link.springer.com/10.1007/s00466-016-1358-z · Zbl 1398.74378
[42] Javili, A.; Saeb, S.; Steinmann, P., Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions, Comput. Mech., 59, 21-35 (2017), URL: http://link.springer.com/10.1007/s00466-016-1333-8
[43] Reis, F.; Andrade Pires, F., A mortar based approach for the enforcement of periodic boundary conditions on arbitrarily generated meshes, Comput. Methods Appl. Mech. Engrg., 274, 168-191 (2014) · Zbl 1296.74092
[44] Reis, F.; Rodrigues Lopes, I.; Andrade Pires, F.; Andrade, F., Microscale analysis of heterogeneous ductile materials with nonlocal damage models of integral type, Comput. Struct., 201, 37-57 (2018), URL: https://www.sciencedirect.com/science/article/pii/S0045794917309847
[45] Nguyen, V.-D.; Béchet, E.; Geuzaine, C.; Noels, L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation, Comput. Mater. Sci., 55, 390-406 (2012), URL: https://www.sciencedirect.com/science/article/pii/S0927025611005866
[46] Aduloju, S. C.; Truster, T. J., A primal formulation for imposing periodic boundary conditions on conforming and nonconforming meshes, Comput. Methods Appl. Mech. Engrg., Article 112663 pp. (2019), URL: https://www.sciencedirect.com/science/article/pii/S0045782519305481 · Zbl 1441.74226
[47] Blanco, P.; Sánchez, P.; de Souza Neto, E.; Feijóo, R., The method of multiscale virtual power for the derivation of a second order mechanical model, Mech. Mater., 99, 53-67 (2016), URL: http://www.sciencedirect.com/science/article/pii/S0167663616300400
[48] Perić, D.; de Souza Neto, E. A.; Feijóo, R. A.; Partovi, M.; Molina, A. J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation, Internat. J. Numer. Methods Engrg., 87, 149-170 (2011), URL: http://doi.wiley.com/10.1002/nme.3014 · Zbl 1242.74087
[49] Bernardi, C.; Maday, Y.; Patera, A. T., Domain decomposition by the mortar element method, Asymptot. Numer. Methods Partial Differ. Equ. Crit. Parameters, 384, 269-286 (1993) · Zbl 0799.65124
[50] Puso, M. A.; Laursen, T. A., Mesh tying on curved interfaces in 3D, Eng. Comput., 20, 305-319 (2003) · Zbl 1045.65107
[51] Puso, M. A., A 3D mortar method for solid mechanics, Internat. J. Numer. Methods Engrg., 59, 315-336 (2004) · Zbl 1047.74065
[52] Popp, A., Mortar Methods for Computational Contact Mechanics and General Interface Problems (2012), Technische Universität München, (Ph.D. thesis)
[53] Wohlmuth, B. I., Discretization Methods and Iterative Solvers Based on Domain Decomposition (2001), Springer Verlag: Springer Verlag Berlin, Heidelberg, New York · Zbl 0966.65097
[54] Farah, P.; Popp, A.; Wall, W. A., Segment-based vs. Element-based integration for mortar methods in computational contact mechanics, Comput. Mech., 55, 209-228 (2015) · Zbl 1311.74120
[55] Wilking, C.; Bischoff, M., Alternative integration algorithms for three-dimensional mortar contact, Comput. Mech., 59, 203-218 (2017)
[56] Hartmann, S.; Brunssen, S.; Ramm, E.; Wohlmuth, B., Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy, Internat. J. Numer. Methods Engrg., 70, 883-912 (2007) · Zbl 1194.74218
[57] Dittmann, M.; Schuß, S.; Wohlmuth, B.; Hesch, C., Crosspoint modification for multi-patch isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 360, Article 112768 pp. (2020) · Zbl 1441.74236
[58] Farah, P.; Wall, W. A.; Popp, A., A mortar finite element approach for point, line, and surface contact, Internat. J. Numer. Methods Engrg., 114, 255-291 (2018) · Zbl 07878333
[59] Popp, A.; Wohlmuth, B.; Gee, M.; Wall, W., Dual quadratic mortar finite element methods for 3D finite deformation contact, SIAM J. Sci. Comput., 34, 421-446 (2012) · Zbl 1250.74020
[60] MA41 sparse unsymmetric system: unsymmetric multifrontal method (2013), http://www.hsl.rl.ac.uk/catalogue/ma41.html
[61] Intel MKL PARDISO - parallel direct sparse solver interface (2018), https://software.intel.com/en-us/mkl-developer-reference-fortran-intel-mkl-pardiso-parallel-direct-sparse-solver-interface
[62] Melro, A.; Camanho, P.; Pinho, S., Generation of random distribution of fibres in long-fibre reinforced composites, Compos. Sci. Technol., 68, 2092-2102 (2008), URL: https://www.sciencedirect.com/science/article/pii/S0266353808001048
[63] Quey, R.; Dawson, P.; Barbe, F., Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Engrg., 200, 1729-1745 (2011), URL: https://www.sciencedirect.com/science/article/pii/S004578251100003X · Zbl 1228.74093
[64] Rodrigues Lopes, I. A., Multi-Scale Modelling and Analysis of Multi-Phase Solids Using Second-Order Computational Homogenisation at Finite Strains with Parallel Computing (2019), Faculdade de Engenharia, Universidade do Porto, URL: https://repositorio-aberto.up.pt/bitstream/10216/120992/2/341468.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.