×

A monolithic, mortar-based interface coupling and solution scheme for finite element simulations of lithium-ion cells. (English) Zbl 07878370

Summary: This work introduces a novel, mortar-based coupling scheme for electrode-electrolyte interfaces in 3-dimensional finite element models for lithium-ion cells and similar electrochemical systems. The coupling scheme incorporates the widely applied Butler-Volmer charge transfer kinetics, but conceptually also works for other interface equations. Unlike conventional approaches, the coupling scheme allows flexible mesh generation for the electrode and electrolyte phases with nonmatching meshes at electrode-electrolyte interfaces. As a result, the desired spatial mesh resolution in each phase and the resulting computational effort can be easily controlled, leading to improved efficiency. All governing equations are solved in a monolithic fashion as a holistic, unified system of linear equations for computational robustness and performance reasons. Consistency and optimal convergence behavior of the coupling scheme are demonstrated in elementary numerical tests, and the discharge of two different realistic lithium-ion cells, each consisting of an anode, a cathode, and an electrolyte, is also simulated. One of the two cells involves about 1.35 million degrees of freedom and very complex microstructural geometries obtained from X-ray tomography data. For validation purposes, characteristic numerical results from the literature are reproduced, and the coupling scheme is shown to require considerably fewer degrees of freedom than a standard discretization with matching interface meshes to achieve a similar level of accuracy.
{Copyright © 2018 John Wiley & Sons, Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
65Nxx Numerical methods for partial differential equations, boundary value problems
74Mxx Special kinds of problems in solid mechanics
Full Text: DOI

References:

[1] ScrosatiB, GarcheJ. Lithium batteries: status, prospects and future. J Power Sources. 2010;195(9):2419‐2430.
[2] MirandaD, CostaCM, Lanceros‐MendezS. Lithium ion rechargeable batteries: state of the art and future needs of microscopic theoretical models and simulations. J Electroanal Chem. 2015;739:97‐110.
[3] FullerTF, DoyleM, NewmanJ. Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc. 1994;141(1):1‐10.
[4] NewmanJ, Thomas‐AlyeaKE. Electrochemical Systems. 3rd ed. Hoboken, NJ: John Wiley & Sons; 2004.
[5] FrancoAA. Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Adv. 2013;3(32):13027‐13058.
[6] EnderM, JoosJ, CarraroT, Ivers‐TifféeE. Three‐dimensional reconstruction of a composite cathode for lithium‐ion cells. Electrochem Commun. 2011;13(2):166‐168.
[7] EnderM, JoosJ, CarraroT, Ivers‐TifféeE. Quantitative characterization of LiFePO_4 cathodes reconstructed by FIB/SEM tomography. J Electrochem Soc. 2012;159(7):A972‐A980.
[8] HutzenlaubT, ThieleS, PaustN, SpotnitzR, ZengerleR, WalchshoferC. Three‐dimensional electrochemical Li‐ion battery modelling featuring a focused ion‐beam/scanning electron microscopy based three‐phase reconstruction of a LiCoO_2 cathode. Electrochimica Acta. 2014;115:131‐139.
[9] HutzenlaubT, ThieleS, ZengerleR, ZieglerC. Three‐dimensional reconstruction of a LiCoO_2 Li‐ion battery cathode. Electrochem Solid‐State Lett. 2012;15(3):A33‐A36.
[10] LiuH, FosterJM, GullyA, et al. Three‐dimensional investigation of cycling‐induced microstructural changes in lithium‐ion battery cathodes using focused ion beam/scanning electron microscopy. J Power Sources. 2016;306:300‐308.
[11] StephensonDE, WalkerBC, SkeltonCB, GorzkowskiEP, RowenhorstDJ, WheelerDR. Modeling 3D microstructure and ion transport in porous Li‐ion battery electrodes. J Electrochem Soc. 2011;158(7):A781‐A789.
[12] WiedemannAH, GoldinGM, BarnettSA, ZhuH, KeeRJ. Effects of three‐dimensional cathode microstructure on the performance of lithium‐ion battery cathodes. Electrochimica Acta. 2013;88:580‐588.
[13] WilsonJR, CroninJS, BarnettSA, HarrisSJ. Measurement of three‐dimensional microstructure in a LiCoO_2 positive electrode. J Power Sources. 2011;196(7):3443‐3447.
[14] ZielkeL, HutzenlaubT, WheelerDR, et al. A combination of X‐Ray tomography and carbon binder modeling: reconstructing the three phases of LiCoO_2 Li‐ion battery cathodes. Adv Energy Mater. 2014;4(8):1301617.
[15] ZielkeL, HutzenlaubT, WheelerDR, et al. Three‐phase multiscale modeling of a LiCoO_2 cathode: combining the advantages of FIB‐SEM imaging and X‐Ray tomography. Adv Energy Mater. 2015;5(5):1401612.
[16] EbnerM, ChungDW, GarcíaRE, WoodV. Tortuosity anisotropy in lithium‐ion battery electrodes. Adv Energy Mater. 2014;4(5):1301278.
[17] EbnerM, WoodV. Tool for tortuosity estimation in lithium ion battery porous electrodes. J Electrochem Soc. 2015;162(2):A3064‐A3070.
[18] Ben BelgacemF. The mortar finite element method with Lagrange multipliers. Numer Math. 1999;84(2):173‐197. · Zbl 0944.65114
[19] BernardiC, MadayY, PateraAT. A new nonconforming approach to domain decomposition: the mortar element method. In: BrezisH (ed.), LionsJL (ed.), eds. Nonlinear Partial Differential Equations and Their Applications. Harlow, UK:Longman Scientific & Technical; 1994:13‐51. · Zbl 0797.65094
[20] BernardiC, MadayY, PateraAT. Domain decomposition by the mortar element method. In: KaperHG (ed.), GarbeyMarc (ed.), PieperGW (ed.), eds. Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters. Vol 384. Dordrecht, Netherlands: Springer; 1993:269‐286. · Zbl 0799.65124
[21] FarhatC, LesoinneM, Le TallecP. Load and motion transfer algorithms for fluid/structure interaction problems with non‐matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng. 1998;157(1‐2):95‐114. · Zbl 0951.74015
[22] EhrlA, PoppA, GravemeierV, WallWA. A dual mortar approach for mesh tying within a variational multiscale method for incompressible flow. Int J Numer Methods Fluids. 2014;76(1):1‐27. · Zbl 1455.76082
[23] KrauseR, WohlmuthBI. Nonconforming domain decomposition techniques for linear elasticity. East‐West J Numer Math. 2000;8(3):177‐206. · Zbl 1050.74046
[24] PusoMA. A 3D mortar method for solid mechanics. Int J Numer Methods Eng. 2004;59(3):315‐336. · Zbl 1047.74065
[25] KlöppelT, PoppA, KüttlerU, WallWA. Fluid-structure interaction for non‐conforming interfaces based on a dual mortar formulation. Comput Methods Appl Mech Eng. 2011;200(45‐46):3111‐3126. · Zbl 1230.74185
[26] FarahP, GitterleM, WallWA, PoppA. Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods. Key Eng Mater. 2016;681:1‐18.
[27] HüeberS, StadlerG, WohlmuthBI. A primal‐dual active set algorithm for three‐dimensional contact problems with Coulomb friction. SIAM J Sci Comput. 2008;30(2):572‐596. · Zbl 1158.74045
[28] HüeberS, WohlmuthBI. A primal-dual active set strategy for non‐linear multibody contact problems. Comput Methods Appl Mech Eng. 2005;194(27‐29):3147‐3166. · Zbl 1093.74056
[29] PoppA, GitterleM, GeeMW, WallWA. A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Methods Eng. 2010;83(11):1428‐1465. · Zbl 1202.74183
[30] PusoMA, LaursenTA. A mortar segment‐to‐segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng. 2004;193(6‐8):601‐629. · Zbl 1060.74636
[31] PusoMA, LaursenTA. A mortar segment‐to‐segment frictional contact method for large deformations. Comput Methods Appl Mech Eng. 2004;193(45‐47):4891‐4913. · Zbl 1112.74535
[32] FarahP, VuongA‐T, WallWA, PoppA. Volumetric coupling approaches for multiphysics simulations on non‐matching meshes. Int J Numer Methods Eng. 2016;108(12):1550‐1576. · Zbl 07870051
[33] GoldinGM, ColclasureAM, WiedemannAH, KeeRJ. Three‐dimensional particle‐resolved models of Li‐ion batteries to assist the evaluation of empirical parameters in one‐dimensional models. Electrochimica Acta. 2012;64:118‐129.
[34] SpotnitzR, KaludercicB, MuzaferijaS, PericM, DamblancG, HartridgeS. Geometry‐resolved electro‐chemistry model of Li‐ion batteries. SAE Int J Altern Powertrains. 2012;1:160‐168.
[35] WuJ, SrinivasanV, XuJ, WangCY. Newton‐Krylov‐multigrid algorithms for battery simulation. J Electrochem Soc. 2002;149(10):A1342‐A1348.
[36] WuJ, XuJ. Modeling and simulations for electrochemical power systems. Recent Progress in Computational and Applied PDES. 2nd ed. Boston, MA: Springer; 2002:365‐381. · Zbl 1075.78537
[37] DanowskiC, GravemeierV, YoshiharaL, WallWA. A monolithic computational approach to thermo‐structure interaction. Int J Numer Methods Eng. 2013;95(13):1053‐1078. · Zbl 1352.74094
[38] HeilM, HazelAL, BoyleJ. Solvers for large‐displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput Mech. 2008;43(1):91‐101. · Zbl 1309.76126
[39] HouG, WangJ, LaytonA. Numerical methods for fluid‐structure interaction – a review. Commun Comput Phys. 2012;12(2):337‐377. · Zbl 1373.76001
[40] HübnerB, WalhornE, DinklerD. A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng. 2004;193(23‐26):2087‐2104. · Zbl 1067.74575
[41] KüttlerU, GeeM, FörsterC, ComerfordA, WallWA. Coupling strategies for biomedical fluid‐structure interaction problems. Int J Numer Methods Biomed Eng. 2010;26(3‐4):305‐321. · Zbl 1183.92008
[42] MichlerC, HulshoffSJ, vanBrummelenEH, deBorstR. A monolithic approach to fluid-structure interaction. Comput Fluids. 2004;33(5‐6):839‐848. Applied Mathematics for Industrial Flow Problems. · Zbl 1053.76042
[43] ZienkiewiczOC, TaylorRL. The Finite Element Method for Solid and Structural Mechanics. Oxford, UK:Butterworth‐Heinemann; 2005. · Zbl 1084.74001
[44] ColclasureAM, KeeRJ. Thermodynamically consistent modeling of elementary electrochemistry in lithium‐ion batteries. Electrochimica Acta. 2010;55(28):8960‐8973.
[45] BenziM, GolubGH, LiesenJ. Numerical solution of saddle point problems. Acta Numer. 2005;14:1‐137. · Zbl 1115.65034
[46] HüeberS, WohlmuthBI. Thermo‐mechanical contact problems on non‐matching meshes. Comput Methods Appl Mech Eng. 2009;198(15‐16):1338‐1350. · Zbl 1227.74072
[47] MadayY, MavriplisC, PateraA. Nonconforming mortar element methods: application to spectral discretizations. Domain Decompos Methods. 1989:392‐418. · Zbl 0692.65055
[48] DickopfT, KrauseR. Efficient simulation of multi‐body contact problems on complex geometries: a flexible decomposition approach using constrained minimization. Int J Numer Methods Eng. 2009;77(13):1834‐1862. · Zbl 1160.74411
[49] WohlmuthBI. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal. 2000;38(3):989‐1012. · Zbl 0974.65105
[50] FarahP, PoppA, WallWA. Segment‐based vs. element‐based integration for mortar methods in computational contact mechanics. Comput Mech. 2014;55(1):209‐228. · Zbl 1311.74120
[51] VerdugoF, RothCJ, YoshiharaL, WallWA. Efficient solvers for coupled models in respiratory mechanics. Int J Numer Methods Biomed Eng. 2017;33(2):e02795.
[52] VerdugoF, WallWA. Unified computational framework for the efficient solution of n‐field coupled problems with monolithic schemes. Comput Methods Appl Mech Eng. 2016;310:335‐366. · Zbl 1439.65037
[53] SaadY, SchultzMH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput. 1986;7(3):856‐869. · Zbl 0599.65018
[54] WallWA, KronbichlerM. BACI: a multiphysics simulation environment [Technical Report]. Munich, Germany:Institute for Computational Mechanics, Department of Mechanical Engineering, Technical University of Munich; 2017.
[55] Computational Simulation Software, LLC. Trelis Pro 15.2.2 (64 bit).
[56] AyachitU. The ParaView Guide: A Parallel Visualization Application. Clifton Park, NY: Kitware, Inc; 2015.
[57] IronsBM. Numerical Integration Applied to Finite Element Methods. University of Newcastle; 1966.
[58] TaylorRL, SimoJC, ZienkiewiczOC, ChanACH. The patch test—a condition for assessing FEM convergence. Int J Numer Methods Eng. 1986;22(1):39‐62. · Zbl 0593.73072
[59] PapadopoulosP, TaylorRL. A mixed formulation for the finite element solution of contact problems. Comput Method Appl Mech Eng. 1992;94(3):373‐389. · Zbl 0743.73029
[60] TaylorRL, PapadopoulosP. On a patch test for contact problems in two dimensions. Nonlinear Computational Mechanics. Berlin, Germany: Springer‐Verlag; 1991.
[61] SmithK, WangC‐Y. Solid‐state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles. J Power Sources. 2006;161(1):628‐639.
[62] EbnerM, GeldmacherF, MaroneF, StampanoniM, WoodV. X‐Ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv Energy Mater. 2013;3(7):845‐850.
[63] Materialise NV. Mimics 16.0 for X64, Platform V16.0.0.235; 2013.
[64] Materialise NV. 3‐matic, base, V8.0.0.113; 2013.
[65] GeuzaineC, RemacleJF. GMSH: a 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities. Int J Numer Methods Eng. 2009;79(11):1309‐1331. · Zbl 1176.74181
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.