×

Explicit synchronous partitioned algorithms for interface problems based on Lagrange multipliers. (English) Zbl 1442.65148

Summary: Traditional explicit partitioned schemes exchange boundary conditions between subdomains and can be related to iterative solution methods for the coupled problem. As a result, these schemes may require multiple subdomain solves, acceleration techniques, or optimized transmission conditions to achieve sufficient accuracy and/or stability. We present a new synchronous partitioned method derived from a well-posed mixed finite element formulation of the coupled problem. We transform the resulting Differential Algebraic Equation (DAE) to a Hessenberg index-1 form in which the algebraic equation defines the Lagrange multiplier as an implicit function of the states. Using this fact we eliminate the multiplier and reduce the DAE to a system of explicit ODEs for the states. Explicit time integration both discretizes this system in time and decouples its equations. As a result, the temporal accuracy and stability of our formulation are governed solely by the accuracy and stability of the explicit scheme employed and are not subject to additional stability considerations as in traditional partitioned schemes. We establish sufficient conditions for the formulation to be well-posed and prove that classical mortar finite elements on the interface are a stable choice for the Lagrange multiplier. We show that in this case the condition number of the Schur complement involved in the elimination of the multiplier is bounded by a constant. The paper concludes with numerical examples illustrating the approach for two different interface problems.

MSC:

65L80 Numerical methods for differential-algebraic equations
35Q74 PDEs in connection with mechanics of deformable solids
74A50 Structured surfaces and interfaces, coexistent phases

References:

[1] Jiao, X.; Heath, M. T., Common-refinement-based data transfer between non-matching meshes in multiphysics simulations, Internat. J. Numer. Methods Engrg., 61, 14, 2402-2427 (2004) · Zbl 1075.74711
[2] Gatzhammer, B., Efficient and Flexible Partitioned Simulation of Fluid-Structure Interactions (2014), Technische Universitaet Muenchen: Technische Universitaet Muenchen Fakultaet fuer Informatik. Informatik 5 - Lehrstuhl fuer Wissenschaftliches Rechnen
[3] Slattery, S. R., Mesh-free data transfer algorithms for partitioned multiphysics problems: Conservation, accuracy, and parallelism, J. Comput. Phys., 307, 164-188 (2016) · Zbl 1352.65038
[4] Piperno, S.; Farhat, C., Partitioned procedures for the transient solution of coupled aeroelastic problems - Part II: Energy transfer analysis and three-dimensional applications, Comput. Methods Appl. Mech. Engrg., 190, 24-25, 3147-3170 (2001) · Zbl 1015.74009
[5] Farhat, C.; Lesoinne, M.; Tallec, P. L., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. Methods Appl. Mech. Engrg., 157, 1-2, 95-114 (1998) · Zbl 0951.74015
[6] Banks, J.; Henshaw, W.; Sjögreen, B., A stable FSI algorithm for light rigid bodies in compressible flow, J. Comput. Phys., 245, 399-430 (2013) · Zbl 1349.76429
[7] Pawlowski, R.; Bartlett, R.; Belcourt, N.; Hooper, R.; Schmidt, R., Theory Manual for Multi-physics Code Coupling in LIME. Version 1.0 (2011), Technical ReportSAND2011
[8] Förster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 196, 7, 1278-1293 (2007) · Zbl 1173.74418
[9] Toth, A.; Kelley, C. T., Convergence analysis for anderson acceleration, SIAM J. Numer. Anal., 53, 2, 805-819 (2015) · Zbl 1312.65083
[10] Banks, J.; Henshaw, W.; Schwendeman, D., An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids, J. Comput. Phys., 269, 108-137 (2014) · Zbl 1349.74373
[12] de Boer, A.; van Zuijlen, A.; Bijl, H., Comparison of conservative and consistent approaches for the coupling of non-matching meshes, Comput. Methods Appl. Mech. Engrg., 197, 49-50, 4284-4297 (2008) · Zbl 1194.74559
[13] Michler, C.; van Brummelen, E.; Hulshoff, S.; de Borst, R., The relevance of conservation for stability and accuracy of numerical methods for fluid – structure interaction, Comput. Methods Appl. Mech. Engrg., 192, 37-38, 4195-4215 (2003) · Zbl 1181.74156
[15] Park, K. C.; Felippa, C. A.; Ohayon, R., Partitioned formulation of internal fluid – structure interaction problems by localized lagrange multipliers, Advances in Computational Methods for Fluid-Structure Interaction. Advances in Computational Methods for Fluid-Structure Interaction, Comput. Methods Appl. Mech. Engrg., 190, 24, 2989-3007 (2001) · Zbl 0983.74022
[16] Ross, M. R.; Felippa, C. A.; Park, K.; Sprague, M. A., Treatment of acoustic fluid – structure interaction by localized Lagrange multipliers: Formulation, Comput. Methods Appl. Mech. Engrg., 197, 33-40, 3057-3079 (2008) · Zbl 1194.74471
[20] Carpenter, N. J.; Taylor, R. L.; Katona, M. G., Lagrange constraints for transient finite element surface contact, Internat. J. Numer. Methods Engrg., 32, 1, 103-128 (1991) · Zbl 0763.73053
[21] Farhat, C.; Crivelli, L.; Roux, F.-X., A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, Internat. J. Numer. Methods Engrg., 37, 11, 1945-1975 (1994) · Zbl 0824.73067
[22] Puso, M. A., A 3D mortar method for solid mechanics, Internat. J. Numer. Methods Engrg., 59, 3, 315-336 (2004) · Zbl 1047.74065
[23] Zywicz, E.; Puso, M. A., A general conjugate-gradient-based predictor – corrector solver for explicit finite-element contact, Internat. J. Numer. Methods Engrg., 44, 4, 439-459 (1999) · Zbl 0949.74074
[24] Zheng, Z.; Simeon, B.; Petzold, L., A stabilized explicit Lagrange multiplier based domain decomposition method for parabolic problems, J. Comput. Phys., 227, 5272-5285 (2007) · Zbl 1142.65076
[25] Guermond, J.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195, 44-47, 6011-6045 (2006) · Zbl 1122.76072
[26] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, (Applied Mathematical Sciences, no. 159 (2004), Springer Verlag: Springer Verlag New York) · Zbl 1059.65103
[27] Bochev, P.; Lehoucq, R., Energy principles and finite element methods for pure traction elasticity, Comput. Methods Appl. Math., 11, 2, 173-191 (2011) · Zbl 1283.65106
[28] Kuberry, P.; Lee, H., A decoupling algorithm for fluid-structure interaction problems based on optimization, Comput. Methods Appl. Mech. Engrg., 267, Supplement C, 594-605 (2013) · Zbl 1286.74031
[29] Dryja, M.; Widlund, O. B., Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48, 2, 121-155 (1995) · Zbl 0824.65106
[30] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (1992), Cambridge University Press
[31] Boyd, S.; Vandenberghe, L., Convex Optimization (2009), Cambridge University Press: Cambridge University Press The Edinburgh Building, Cambridge, CB2 8RU, UK
[32] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer, Berlin · Zbl 0788.73002
[34] Farhat, C.; Roux, F.-X., A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Engrg., 32, 6, 1205-1227 (1991) · Zbl 0758.65075
[35] Heath, M. T., Scientific COMPUTING: An Introductory Survey (2002) · Zbl 0903.68072
[36] Bochev, P.; Gunzburger, M., Least-Squares finite element methods, (Applied Mathematical Sciences, vol. 166 (2009), Springer Verlag) · Zbl 1168.65067
[37] Brooks, A.; Hughes, T. J.R., Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equation, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[40] Bochev, P.; Lehoucq, R., Regularization and stabilization of discrete saddle-point variational problems, 22, 97-113 (2006) · Zbl 1112.65118
[41] Bernardi, C.; Maday, Y.; Patera, A. T., A new nonconforming approach to domain decomposition: The mortar element method, (Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XI (Paris, 1989-1991). Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar, Vol. XI (Paris, 1989-1991), Pitman Res. Notes Math. 299 (1994), Longman Sci. Tech.: Longman Sci. Tech. Harlow, England), 13-51 · Zbl 0797.65094
[42] Belgacem, F. B., The Mortar finite element method with Lagrange multipliers, Numer. Math., 84, 2, 173-197 (1999) · Zbl 0944.65114
[44] Wohlmuth, B. I., Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers, SIAM J. Numer. Anal., 36, 5, 1636-1658 (1999) · Zbl 0942.65123
[45] D. Braess, W. Dahmen, 3. The Mortar element method revisited - What are the right norms? in: N. Debit, M. Garbey, R. Hoppe, J. Periaux, D. Keyes, Y. Kuznetsov (Eds.), Thirteenth International Conference on Domain Decomposition Methods.; D. Braess, W. Dahmen, 3. The Mortar element method revisited - What are the right norms? in: N. Debit, M. Garbey, R. Hoppe, J. Periaux, D. Keyes, Y. Kuznetsov (Eds.), Thirteenth International Conference on Domain Decomposition Methods. · Zbl 1026.65095
[46] Jaiman, R. K.; Jiao, X.; Geubelle, P. H.; Loth, E., Assessment of conservative load transfer for fluid – solid interface with non-matching meshes, Internat. J. Numer. Methods Engrg., 64, 15, 2014-2038 (2005) · Zbl 1122.74544
[48] Y. Li, Y. Zhi Law, V. Joshi, R.K. Jaiman, 3D common-refinement method for non-matching meshes in partitioned variational fluid-structure analysis, ArXiv e-prints, 2017.; Y. Li, Y. Zhi Law, V. Joshi, R.K. Jaiman, 3D common-refinement method for non-matching meshes in partitioned variational fluid-structure analysis, ArXiv e-prints, 2017.
[49] Solberg, J. M.; Papadopoulos, P., An analysis of dual formulations for the finite element solution of two-body contact problems, Comput. Methods Appl. Mech. Engrg., 194, 25, 2734-2780 (2005) · Zbl 1093.74058
[51] Christine, B.; Yvon, M.; Francesca, R., Basics and some applications of the mortar element method, GAMM-Mitt., 28, 2, 97-123 (2005) · Zbl 1177.65178
[53] Flemisch, B.; Puso, M. A.; Wohlmuth, B. I., A new dual mortar method for curved interfaces: 2D elasticity, Internat. J. Numer. Methods Engrg., 63, 6, 813-832 (2005) · Zbl 1084.74050
[54] Bochev, P.; Kuberry, P.; Peterson, K., A virtual control coupling approach for problems with non-coincident discrete interfaces, (Lirkov, I.; Margenov, S.; Waśniewski, J., Proceedings of the 11th International Conference, LSSC 2017, Sozopol, Bulgaria, June 5-9, 2017. Proceedings of the 11th International Conference, LSSC 2017, Sozopol, Bulgaria, June 5-9, 2017, Lecture Notes in Computer Science, vol. 10665 (2018), Springer Berlin Heidelberg), 147-155 · Zbl 1479.49075
[55] P. Kuberry, P. Bochev, K. Peterson, A virtual control, mesh-free coupling method for non-coincident interfaces., in: Proceedings of the ECCM 6/ECFD 7, Glasgow, UK.; P. Kuberry, P. Bochev, K. Peterson, A virtual control, mesh-free coupling method for non-coincident interfaces., in: Proceedings of the ECCM 6/ECFD 7, Glasgow, UK. · Zbl 06799810
[56] Bochev, P.; Edwards, H. C.; Kirby, R. C.; Peterson, K.; Ridzal, D., Solving PDEs with Intrepid, Sci. Program., 20, 2, 151-180 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.