×

Adaptive iterative linearization Galerkin methods for nonlinear problems. (English) Zbl 07240964

Summary: A wide variety of (fixed-point) iterative methods for the solution of nonlinear equations (in Hilbert spaces) exists. In many cases, such schemes can be interpreted as iterative local linearization methods, which, as will be shown, can be obtained by applying a suitable preconditioning operator to the original (nonlinear) equation. Based on this observation, we will derive a unified abstract framework which recovers some prominent iterative schemes. In particular, for Lipschitz continuous and strongly monotone operators, we derive a general convergence analysis. Furthermore, in the context of numerical solution schemes for nonlinear partial differential equations, we propose a combination of the iterative linearization approach and the classical Galerkin discretization method, thereby giving rise to the so-called iterative linearization Galerkin (ILG) methodology. Moreover, still on an abstract level, based on two different elliptic reconstruction techniques, we derive a posteriori error estimates which separately take into account the discretization and linearization errors. Furthermore, we propose an adaptive algorithm, which provides an efficient interplay between these two effects. In addition, the ILG approach will be applied to the specific context of finite element discretizations of quasilinear elliptic equations, and some numerical experiments will be performed.

MSC:

47H10 Fixed-point theorems
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations
49M15 Newton-type methods
65J15 Numerical solutions to equations with nonlinear operators

Software:

p1afem

References:

[1] Ainsworth, Mark; Oden, J. Tinsley, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg., 142, 1-2, 1-88 (1997) · Zbl 0895.76040 · doi:10.1016/S0045-7825(96)01107-3
[2] Amrein, Mario; Melenk, Jens Markus; Wihler, Thomas P., An \(hp\)-adaptive Newton-Galerkin finite element procedure for semilinear boundary value problems, Math. Methods Appl. Sci., 40, 6, 1973-1985 (2017) · Zbl 1360.49019
[3] Amrein, Mario; Wihler, Thomas P., An adaptive Newton-method based on a dynamical systems approach, Commun. Nonlinear Sci. Numer. Simul., 19, 9, 2958-2973 (2014) · Zbl 1510.65104 · doi:10.1016/j.cnsns.2014.02.010
[4] AmreinWihler:15 M. Amrein and T. P. Wihler, Fully adaptive Newton-Galerkin methods for semilinear elliptic partial differential equations, SIAM J. Sci. Comput. 37 (2015), no. 4, A1637-A1657. · Zbl 1320.65165
[5] Amrein, Mario; Wihler, Thomas P., An adaptive space-time Newton-Galerkin approach for semilinear singularly perturbed parabolic evolution equations, IMA J. Numer. Anal., 37, 4, 2004-2019 (2017) · Zbl 1433.65205 · doi:10.1093/imanum/drw049
[6] Astala, Kari; Iwaniec, Tadeusz; Martin, Gaven, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series 48, xviii+677 pp. (2009), Princeton University Press, Princeton, NJ · Zbl 1182.30001
[7] Jir\'{a}nek, Pavel; Strako\v{s}, Zden\v{e}k; Vohral\'{\i}k, Martin, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32, 3, 1567-1590 (2010) · Zbl 1215.65168 · doi:10.1137/08073706X
[8] Bernardi, Christine; Dakroub, Jad; Mansour, Gihane; Sayah, Toni, A posteriori analysis of iterative algorithms for a nonlinear problem, J. Sci. Comput., 65, 2, 672-697 (2015) · Zbl 1331.65152 · doi:10.1007/s10915-014-9980-4
[9] Browder, Felix E., Remarks on nonlinear functional equations. II, III, Illinois J. Math. 9 (1965), 608-616; ibid., 9, 617-622 (1965) · Zbl 0131.13501
[10] Chaillou, Alexandra; Suri, Manil, A posteriori estimation of the linearization error for strongly monotone nonlinear operators, J. Comput. Appl. Math., 205, 1, 72-87 (2007) · Zbl 1122.65053 · doi:10.1016/j.cam.2006.04.041
[11] Congreve, Scott; Wihler, Thomas P., Iterative Galerkin discretizations for strongly monotone problems, J. Comput. Appl. Math., 311, 457-472 (2017) · Zbl 1352.65487 · doi:10.1016/j.cam.2016.08.014
[12] Deuflhard, Peter, Newton Methods for Nonlinear Problems, Springer Series in Computational Mathematics 35, xii+424 pp. (2004), Springer-Verlag, Berlin · Zbl 1056.65051
[13] D\"{o}rfler, Willy, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33, 3, 1106-1124 (1996) · Zbl 0854.65090 · doi:10.1137/0733054
[14] El Alaoui, Linda; Ern, Alexandre; Vohral\'{\i}k, Martin, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg., 200, 37-40, 2782-2795 (2011) · Zbl 1230.65118 · doi:10.1016/j.cma.2010.03.024
[15] Ern, Alexandre; Vohral\'{\i}k, Martin, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput., 35, 4, A1761-A1791 (2013) · Zbl 1362.65056 · doi:10.1137/120896918
[16] Funken, Stefan; Praetorius, Dirk; Wissgott, Philipp, Efficient implementation of adaptive P1-FEM in Matlab, Comput. Methods Appl. Math., 11, 4, 460-490 (2011) · Zbl 1284.65197 · doi:10.2478/cmam-2011-0026
[17] Gantner, Gregor; Haberl, Alexander; Praetorius, Dirk; Stiftner, Bernhard, Rate optimal adaptive FEM with inexact solver for nonlinear operators, IMA J. Numer. Anal., 38, 4, 1797-1831 (2018) · Zbl 1477.65212 · doi:10.1093/imanum/drx050
[18] Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos, Convergence of an adaptive Ka\v{c}anov FEM for quasi-linear problems, Appl. Numer. Math., 61, 4, 512-529 (2011) · Zbl 1211.65154 · doi:10.1016/j.apnum.2010.12.001
[19] Han, Weimin; Jensen, S\o ren; Shimansky, Igor, The Ka\v{c}anov method for some nonlinear problems, Appl. Numer. Math., 24, 1, 57-79 (1997) · Zbl 0878.65099 · doi:10.1016/S0168-9274(97)00009-3
[20] HeidWihler:19 P. Heid and T. P. Wihler, On the convergence of adaptive iterative linearized Galerkin methods, Tech. Report 1905.06682 (2019).
[21] Houston, Paul; Wihler, Thomas P., An \(hp\)-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems, Math. Comp., 87, 314, 2641-2674 (2018) · Zbl 1410.65449 · doi:10.1090/mcom/3308
[22] Lakkis, Omar; Makridakis, Charalambos, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp., 75, 256, 1627-1658 (2006) · Zbl 1109.65079 · doi:10.1090/S0025-5718-06-01858-8
[23] Makridakis, Charalambos; Nochetto, Ricardo H., Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41, 4, 1585-1594 (2003) · Zbl 1052.65088 · doi:10.1137/S0036142902406314
[24] Mitchell, William F., Adaptive refinement for arbitrary finite-element spaces with hierarchical bases, J. Comput. Appl. Math., 36, 1, 65-78 (1991) · Zbl 0733.65066 · doi:10.1016/0377-0427(91)90226-A
[25] Ne\v{c}as, Jind\v{r}ich, Introduction to the Theory of Nonlinear Elliptic Equations, A Wiley-Interscience Publication, 164 pp. (1986), John Wiley & Sons, Ltd., Chichester · Zbl 0643.35001
[26] Potschka, Andreas, Backward step control for global Newton-type methods, SIAM J. Numer. Anal., 54, 1, 361-387 (2016) · Zbl 1382.65145 · doi:10.1137/140968586
[27] Rudin, Walter, Real and Complex Analysis, xiv+416 pp. (1987), McGraw-Hill Book Co., New York · Zbl 0925.00005
[28] Schneebeli, Hans Rudolf; Wihler, Thomas P., The Newton-Raphson method and adaptive ODE solvers, Fractals, 19, 1, 87-99 (2011) · Zbl 1219.65049 · doi:10.1142/S0218348X11005191
[29] Verf\"{u}rth, R\"{u}diger, A Posteriori Error Estimation Techniques for Finite Element Methods, Numerical Mathematics and Scientific Computation, xx+393 pp. (2013), Oxford University Press, Oxford · Zbl 1279.65127 · doi:10.1093/acprof:oso/9780199679423.001.0001
[30] Zarantonello:60 E. H. Zarantonello, Solving functional equations by contractive averaging, Tech. Report 160, Mathematics Research Center, Madison, WI, 1960.
[31] Zeidler, Eberhard, Nonlinear Functional Analysis and its Applications. I, xxi+897 pp. (1986), Springer-Verlag, New York · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
[32] Zeidler, Eberhard, Nonlinear Functional Analysis and its Applications. IV, xxiv+975 pp. (1988), Springer-Verlag, New York · Zbl 0648.47036 · doi:10.1007/978-1-4612-4566-7
[33] Zeidler, Eberhard, Nonlinear Functional Analysis and its Applications. II/B, i-xvi and 469-1202 (1990), Springer-Verlag, New York · Zbl 0684.47028 · doi:10.1007/978-1-4612-0985-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.