×

A model structure approach to the finitistic dimension conjectures. (English) Zbl 1277.16009

The authors consider the finitistic dimension conjectures in terms of questions about a certain model category structure which is defined from the cotorsion pair cogenerated by the modules of finite projective dimension.
Given a hereditary cotorsion theory \((\mathcal{F,C})\) in the category of \(R\)-modules which is cogenerated by a set, the authors obtain a cofibrantly generated model category structure on the category of chain complexes of \(R\)-modules, somewhat as in [J. Gillespie, Math. Z. 257, No. 4, 811-843 (2007; Zbl 1134.55016)] but, in view of the applications, without any assumption that \(\mathcal F\) is closed under direct limits. They define a notion of \(\mathcal F\)-cofibrant dimension in terms of resolutions and show that this equals a notion of projective dimension relative to \(\mathcal C\) defined in terms of \(\text{Ext}^n\). They consider cotorsion pairs defined using this relative projective dimension (considering, for each \(n\), the cotorsion pair cogenerated by the modules of relative dimension \(\leq n\)), obtaining model structures on the category of unbounded chain complexes in which the weak equivalences are the homology isomorphisms.
Taking \(\mathcal F\) to consist of the projective modules, so \(\mathcal C=R\text{-Mod}\), they obtain a criterion, in terms of the cotorsion pair cogenerated by the modules of finite projective dimension, for the big finitistic dimension of any ring \(R\) to be finite, as well as an analogous result for the little finitistic dimension.

MSC:

16E30 Homological functors on modules (Tor, Ext, etc.) in associative algebras
16E10 Homological dimension in associative algebras
16D90 Module categories in associative algebras
16S90 Torsion theories; radicals on module categories (associative algebraic aspects)
18G35 Chain complexes (category-theoretic aspects), dg categories
55U35 Abstract and axiomatic homotopy theory in algebraic topology
18E30 Derived categories, triangulated categories (MSC2010)

Citations:

Zbl 1134.55016

References:

[1] Angeleri Hügel, Homological dimensions in cotorsion pairs, Ill. J. Math. 53 (1) pp 251– (2009) · Zbl 1205.16005
[2] Angeleri Hügel, Infinitely generated tilting modules of finite projective dimension, Forum. Math. 13 pp 239– (2001) · Zbl 0984.16009 · doi:10.1515/form.2001.006
[3] Angeleri Hügel, Tilting theory and the finitistic dimension conjetures, Trans. Am. Math. Soc. 354 pp 4345– (2002) · Zbl 1028.16004 · doi:10.1090/S0002-9947-02-03066-0
[4] Auslander, On the dimension of modules and algebras, III. Global dimension, Nagoya Math. J. 9 pp 67– (1955) · Zbl 0067.27103 · doi:10.1017/S0027763000023291
[5] M. Auslander I. Reiten Applications of contravariantly fnite subcategories 111 152 1991 · Zbl 0774.16006
[6] Beke, Sheafifiable homotopy model categories, Math. Proc. Camb. Philos. Soc. 129 pp 447– (2000) · Zbl 0964.55018 · doi:10.1017/S0305004100004722
[7] Chase, Direct products of modules, Trans. Am. Math. Soc. 97 pp 457– (1960) · Zbl 0100.26602 · doi:10.1090/S0002-9947-1960-0120260-3
[8] Eklof, Homological algebra and set theory, Trans. Am. Math. Soc. 227 pp 207– (1977) · Zbl 0355.02047 · doi:10.1090/S0002-9947-1977-0453520-X
[9] Enochs, Relative Homological Algebra (2000) · doi:10.1515/9783110803662
[10] Enochs, Flat covers in the category of quasi-coherent sheaves over the projective line, Commun. Algebra 32 pp 1497– (2004) · Zbl 1089.18009 · doi:10.1081/AGB-120028794
[11] Enochs, Locally projective monoidal model structure for complexes of quasi-coherent sheaves on P1(k), J. Lond. Math. Soc. 77 pp 253– (2008) · Zbl 1137.18009 · doi:10.1112/jlms/jdm107
[12] S. Estrada P. A. Guil Asensio M. Prest J. Trlifaj Model category structures arising from Drinfeld vector bundles · Zbl 1266.14014
[13] Gillespie, The flat model structure on \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}\(\mathrm {Ch}(R)\)\end{document}, Trans. Am. Math. Soc. 356 pp 3369– (2004) · Zbl 1056.55011 · doi:10.1090/S0002-9947-04-03416-6
[14] Gillespie, Kaplansky classes and derived categories, Math. Z. 257 pp 811– (2007) · Zbl 1134.55016 · doi:10.1007/s00209-007-0148-x
[15] Göbel, Approximations and Endomorphism Algebras of Modules (2006) · doi:10.1515/9783110199727
[16] Green, Finitistic dimension of finite dimensional monomial algebras, J. Algebra 136 pp 37– (1991) · Zbl 0727.16003 · doi:10.1016/0021-8693(91)90062-D
[17] Hovey, Model Categories, Mathematical Surveys and Monographs (1998)
[18] Hovey, Cotorsion pairs, model category structures and representation theory, Math. Z. 241 pp 553– (2002) · Zbl 1016.55010 · doi:10.1007/s00209-002-0431-9
[19] Huisgen-Zimmermann, Homological domino effects and the first finitistic dimension conjecture, Invent. Math. 108 pp 369– (1992) · Zbl 0792.16011 · doi:10.1007/BF02100610
[20] Huisgen-Zimmermann, Bounds on finitistic and global dimension for finite dimensional algebras with vanishing radical cube, J. Algebra 161 pp 47– (1993) · Zbl 0808.16009 · doi:10.1006/jabr.1993.1205
[21] Huisgen-Zimmermann, A homological bridge between finite and infinite dimensional representation, Algebr. Represent. Theory 1 pp 169– (1998) · Zbl 0942.16010 · doi:10.1023/A:1009948721602
[22] Igusa, On the finitistic global dimension conjecture for Artin algebras, Representations of Algebras and Related Topics, Fields Inst. Commun. 45 pp 201– (2005)
[23] A. Joyal 1984
[24] Šťovíček, Generalized Hill Lemma, Kaplansky Theorem for cotorsion pairs, and some applications, Rocky Mt. J. Math. 39 pp 305– (2009) · Zbl 1173.16004 · doi:10.1216/RMJ-2009-39-1-305
[25] Trlifaj, Approximations and the little finitistic dimension of artinian rings, J. Algebra 246 pp 343– (2001) · Zbl 1005.16008 · doi:10.1006/jabr.2001.8951
[26] Trlifaj, Cotorsion theories induced by tilting and cotilting modules, Abelian Groups, Rings and Modules, Contemp. Math. 273 pp 285– (2001) · Zbl 0985.16006 · doi:10.1090/conm/273/04443
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.