×

Extension of the Sumudu homotopy perturbation method to an attractor for one-dimensional Keller-Segel equations. (English) Zbl 1443.65267

Summary: Using an iterative method based on the Sumudu transform, we have solved a system of non-linear partial differential equations, which is derived from attractor for Keller-Segel dynamics system. Graphical representations are provided and display biologically reasonable dependencies of the parameters values. The reliability of the SHPM and the reduced number of computations make the method broadly applicable. In addition, the SHPM calculations are very simple and straightforward. This study demonstrates that SHPM is a powerful and efficient tool for solving non-linear partial differential equations.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
92-08 Computational methods for problems pertaining to biology
Full Text: DOI

References:

[1] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[3] Schaaf, R., Stationary solutions of chemotaxis systems, Trans. Am. Math. Soc., 292, 531-556 (1985) · Zbl 0637.35007
[4] Tindall, M. J.; Maini, P. K.; Porter, S. L.; Armitage, J. P., Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations, Appl. Numer. Math. (2009) · Zbl 1209.92006
[5] Hillen, T.; Painter, K. J., A user’s guide to PDE models for chemotaxis, J. Math. Biol., 58, 1-2, 183-217 (2009) · Zbl 1161.92003
[6] Yagi, A., Norm homotopy of solutions to the parabolic system of chemotaxis, Math. Japonica, 45, 241-265 (1997) · Zbl 0910.92007
[8] Gajewski, H.; Zacharias, K., Global homotopy of a reaction-diffusion system homotopy chemotaxis, Math. Nachr., 195, 77-114 (1998) · Zbl 0918.35064
[9] Herrero, M. A.; Velázquez, J. J.L., A blow-up mechanism for a chemotaxis model, Ann. Scoula Norm. Sup. Pisa IV, 35, 633-683 (1997) · Zbl 0904.35037
[10] Nagai, T.; Senba, T.; Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcialaj Ekvacioj, 40, 411-433 (1997) · Zbl 0901.35104
[11] Nagai, T.; Senba, T.; Suzuki, T., Chemotaxis collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30, 463-493 (2000), 30 (2000) 463-4 · Zbl 0984.35079
[12] Ni, W.-M.; Takagi, I., Locating the peaks of least-energy solutions to a semi-linear Neumann problem, Duke Math. J., 70, 247-281 (1993) · Zbl 0796.35056
[13] Senba, T.; Suzuki, T., Some structures of the solution set for a stationary system of chemotaxis, Adv. Math. Sci. Appl., 10, 191-224 (2000) · Zbl 0999.35031
[14] Wiebers, H., S-shaped bifurcation curves of nonlinear elliptic boundary value problems, Math. Ann., 270, 555-570 (1985) · Zbl 0544.35015
[15] Andrianov, I.; Manevitch, L., Asymptotology: Ideas, Methods, and Applications (2003), Kluwer Academic Publishers
[16] Andrianov, I.; Awrejcewicz, J., Construction of periodic solution to partial differential equations with nonlinear boundary conditions, Int. J. Nonlinear Sci. Numer. Simul., 1, 4, 327-332 (2000) · Zbl 0977.35031
[17] He, J. H., A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int. J. Nonlinear Mech., 35, 1, 37-43 (2000) · Zbl 1068.74618
[18] He, J. H., Bookkeeping parameter in perturbation methods, Int. J. Nonlinear Sci. Numer. Simul., 2, 3, 257-264 (2001) · Zbl 1072.34508
[19] Atangana, A.; Botha, J. F., Analytical solution of the groundwater flow equation obtained via homotopy decomposition method, J. Earth Sci. Clim. Change, 3, 115 (2012)
[20] Bender, C. M.; Pinsky, K. S.; Simmons, L. M., A new perturbative approach to nonlinear problems, J. Math. Phys., 30, 1447-1455 (1989) · Zbl 0684.34008
[21] Delamotte, B., Nonperturbative method for solving differential equations and finding limit cycles, Phys. Rev. Lett., 70, 3361-3364 (1993) · Zbl 1051.65505
[22] He, J. H., Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech., 34, 699-708 (1999) · Zbl 1342.34005
[23] Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 501-544 (1988) · Zbl 0671.34053
[24] He, J. H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, 257-262 (1999) · Zbl 0956.70017
[25] Tan, Y.; Abbasbandy, S., Homotopy analysis method for quadratic Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul., 13, 539-546 (2008) · Zbl 1132.34305
[26] Atangana, A.; Secer, A., The time-fractional coupled-Korteweg-de-Vries equations, Abstract Appl. Anal., 2013, 8 (2013), Article ID 947986 · Zbl 1291.35273
[27] Atangana, A.; Ahmed, O. A.; Bıldık, N., A generalized version of a low velocity impact between a rigid sphere and a transversely isotropic strain-hardening plate supported by a rigid substrate using the concept of noninteger derivatives, Abstract Appl. Anal., 2013, 9 (2013), Article ID 671321 · Zbl 1364.74039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.