×

Finite-time switched second-order sliding-mode control of nonholonomic wheeled mobile robot systems. (English) Zbl 1390.93193

Summary: A continuous finite-time robust control method for the trajectory tracking control of a Nonholonomic Wheeled Mobile Robot (NWMR) is presented in this paper. The proposed approach is composed of conventional Sliding-Mode Control (SMC) in the internal loop and modified Switched Second-Order Sliding-Mode (S-SOSM) control in the external loop. The sliding-mode controller is equivalently represented as stabilization of the nominal system without uncertainties. An S-SOSM control algorithm is employed to counteract the impact of state-dependent unmodeled dynamics and time-varying external disturbances, and the unexpected chattering has been attenuated significantly. Particularly, state-space partitioning is constructed to obtain the bounds of uncertainty terms and accomplish different control objectives under different requirements. Simulation and experiment results are used to demonstrate the effectiveness and applicability of the proposed approach.

MSC:

93B12 Variable structure systems
93B35 Sensitivity (robustness)
93C85 Automated systems (robots, etc.) in control theory
37J60 Nonholonomic dynamical systems

References:

[1] Nguyen, K.-D.; Dankowicz, H., Adaptive control of underactuated robots with unmodeled dynamics, Robotics and Autonomous Systems, 64, 84-99, (2015) · doi:10.1016/j.robot.2014.10.009
[2] Lee, T.-C., Exponential stabilization for nonlinear systems with applications to nonholonomic systems, Automatica, 39, 6, 1045-1051, (2003) · Zbl 1032.93067 · doi:10.1016/S0005-1098(03)00058-X
[3] Worthmann, K.; Mehrez, M. W.; Zanon, M.; Mann, G. K. I.; Gosine, R. G.; Diehl, M., Model predictive control of nonholonomic mobile robots without stabilizing constraints and costs, IEEE Transactions on Control Systems Technology, 24, 4, 1394-1406, (2016) · doi:10.1109/TCST.2015.2488589
[4] Yildirim, S.; Savas, S., Tracking control of a nonholonomic mobile robot using neural network, Handbook of Research on Advancements in Robotics and Mechatronics, 631-661, (2014) · doi:10.4018/978-1-4666-7387-8.ch020
[5] Al-Mayyahi, A.; Wang, W.; Birch, P., Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle, Journal of Control, Automation and Electrical Systems, 27, 1, 29-42, (2016) · doi:10.1007/s40313-015-0214-2
[6] Peng, Z.; Wen, G.; Yang, S.; Rahmani, A., Distributed consensus-based formation control for nonholonomic wheeled mobile robots using adaptive neural network, Nonlinear Dynamics, 86, 1, 605-622, (2016) · Zbl 1349.93292 · doi:10.1007/s11071-016-2910-2
[7] Yang, S.; Cao, Y.; Peng, Z.; Wen, G.; Guo, K., Distributed formation control of nonholonomic autonomous vehicle via RBF neural network, Mechanical Systems and Signal Processing, 87, part B, 81-95, (2017) · doi:10.1016/j.ymssp.2016.04.015
[8] Boukens, M.; Boukabou, A., Design of an intelligent optimal neural network-based tracking controller for nonholonomic mobile robot systems, Neurocomputing, 226, 46-57, (2017) · doi:10.1016/j.neucom.2016.11.029
[9] Peng, Z.; Yang, S.; Wen, G.; Rahmani, A.; Yu, Y., Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots, Neurocomputing, 173, 1485-1494, (2016) · doi:10.1016/j.neucom.2015.09.022
[10] Liu, W.; Lim, C.; Shi, P.; Xu, S., Backstepping fuzzy adaptive control for a class of quantized nonlinear systems, IEEE Transactions on Fuzzy Systems, 25, 5, 1090-1101, (2017) · doi:10.1109/tfuzz.2016.2598360
[11] Ye, J., Tracking control for nonholonomic mobile robots: Integrating the analog neural network into the backstepping technique, Neurocomputing, 71, 16-18, 3373-3378, (2008) · doi:10.1016/j.neucom.2007.11.005
[12] Chen, B.; Zhang, H.; Lin, C., Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form, IEEE Transactions on Neural Networks and Learning Systems, 27, 1, 89-98, (2016) · doi:10.1109/TNNLS.2015.2412121
[13] Goyal, V.; Deolia K, V.; Sharma, T., Neural network based sliding mode control for uncertain discrete-time nonlinear systems with time-varying delay, International Journal of Computational Intelligence Research, 12, 2, 125-138, (2016)
[14] Lai, G.; Liu, Z.; Zhang, Y.; Chen, X.; Chen, C. L., Robust adaptive fuzzy control of nonlinear systems with unknown and time-varying saturation, Asian Journal of Control, 17, 3, 791-805, (2015) · Zbl 1332.93201 · doi:10.1002/asjc.921
[15] Gao, H.; Song, X.; Ding, L.; Xia, K.; Li, N.; Deng, Z., Adaptive motion control of wheeled mobile robot with unknown slippage, International Journal of Control, 87, 8, 1513-1522, (2014) · Zbl 1317.93190 · doi:10.1080/00207179.2013.878038
[16] Huang, J.; Wen, C.; Wang, W.; Jiang, Z.-P., Adaptive output feedback tracking control of a nonholonomic mobile robot, Automatica, 50, 3, 821-831, (2014) · Zbl 1298.93239 · doi:10.1016/j.automatica.2013.12.036
[17] Sharifi, M.; Moradi, H., Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty, Journal of Process Control, 56, 48-57, (2017) · doi:10.1016/j.jprocont.2017.05.010
[18] Ngo, Q. H.; Nguyen, N. P.; Nguyen, C. N.; Tran, T. H.; Ha, Q. P., Fuzzy sliding mode control of an offshore container crane, Ocean Engineering, 140, 125-134, (2017) · doi:10.1016/j.oceaneng.2017.05.019
[19] Hwang, C.-L.; Wu, H.-M., Trajectory tracking of a mobile robot with frictions and uncertainties using hierarchical sliding-mode under-actuated control, IET Control Theory & Applications, 7, 7, 952-965, (2013) · doi:10.1049/iet-cta.2012.0750
[20] Xu, J. X.; Guo, Z. Q.; Lee, T. H., Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot, IEEE Transactions on Industrial Electronics, 61, 7, 3671-3681, (2014) · doi:10.1109/tie.2013.2282594
[21] Xin, L.; Wang, Q.; She, J.; Li, Y., Robust adaptive tracking control of wheeled mobile robot, Robotics and Autonomous Systems, 78, 36-48, (2016) · doi:10.1016/j.robot.2016.01.002
[22] Huang, Y.-J.; Kuo, T.-C.; Chang, S.-H., Adaptive sliding-mode control for nonlinear systems with uncertain parameters, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38, 2, 534-539, (2008) · doi:10.1109/TSMCB.2007.910740
[23] Jasim, I. F.; Plapper, P. W.; Voos, H., Adaptive sliding mode fuzzy control for unknown robots with arbitrarily-switched constraints, Mechatronics, 30, 174-186, (2015) · doi:10.1016/j.mechatronics.2015.07.001
[24] Shen, D.; Sun, Z.; Qiao, Y., Second-order sliding mode control for nonholonomic mobile robots formation, Proceedings of the 30th Chinese Control Conference, CCC 2011
[25] Kali, Y.; Benjelloun, K.; Fatemi, A.; Saad, M.; Benbrahim, M., Second order sliding mode with time delay control for uncertain robot manipulators, Proceedings of the 2016 IEEE International Multidisciplinary Conference on Engineering Technology, IMCET 2016 · doi:10.1109/IMCET.2016.7777445
[26] Huang, X.; Yan, Y.; Zhou, Y., Neural network-based adaptive second order sliding mode control of Lorentz-augmented spacecraft formation, Neurocomputing, 222, 191-203, (2017) · doi:10.1016/j.neucom.2016.10.021
[27] Huangfu, Y.; Ma, R.; Miraoui, A., Avoidance high-frequency chattering second-order sliding mode controller design: buck converter in wind power system, International Journal of Antennas and Propagation, 2012, (2012) · doi:10.1155/2012/176830
[28] Bartolini, G.; Ferrara, A.; Giacomini, L.; Usai, E., Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 45, 7, 1334-1341, (2000) · Zbl 0988.93010 · doi:10.1109/9.867041
[29] El Youssef, E. S.; Martins, N. A.; De Pieri, E. R.; Moreno, U. F., PD-super-twisting second order sliding mode tracking control for a nonholonomic wheeled mobile robot, Proceedings of the 19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014
[30] Mondal, S.; Mahanta, C., Adaptive second order terminal sliding mode controller for robotic manipulators, Journal of The Franklin Institute, 351, 4, 2356-2377, (2014) · Zbl 1372.93065 · doi:10.1016/j.jfranklin.2013.08.027
[31] Zhao, Y.; Sheng, Y.; Liu, X., A novel finite time sliding mode control for robotic manipulators, Proceedings of the 19th IFAC World Congress on International Federation of Automatic Control, IFAC 2014
[32] Matoba, S.; Nakamura, N.; Nakamura, H.; Nishitani, H., Robust finite-time control of robot manipulators, Proceedings of the 18th IFAC World Congress · doi:10.3182/20110828-6-IT-1002.02039
[33] Tanelli, M.; Ferrara, A., Enhancing robustness and performance via switched second order sliding mode control, Institute of Electrical and Electronics Engineers Transactions on Automatic Control, 58, 4, 962-974, (2013) · Zbl 1369.93130 · doi:10.1109/TAC.2012.2225553
[34] Pisano, A.; Tanelli, M.; Ferrara, A., Switched/time-based adaptation for second-order sliding mode control, Automatica, 64, 126-132, (2016) · Zbl 1329.93044 · doi:10.1016/j.automatica.2015.11.006
[35] Saradagi, A.; Muralidharan, V.; Krishnan, V.; Menta, S.; Mahindrakar, A. D., Formation control and trajectory tracking of nonholonomic mobile robots, IEEE Transactions on Control Systems Technology, 99, 1-9, (2017) · doi:10.1109/TCST.2017.2749563
[36] Kanayama, Y.; Kimura, Y.; Miyazaki, F.; Noguchi, T., A stable tracking control method for an autonomous mobile robot, Proceedings of the IEEE International Conference on Robotics and Automation
[37] Sharma, B.; Vanualailai, J.; Singh, S., Tunnel passing maneuvers of prescribed formations, International Journal of Robust and Nonlinear Control, 24, 5, 876-901, (2014) · Zbl 1283.93026 · doi:10.1002/rnc.2923
[38] Sharma, B.; Vanualailai, J.; Singh, S., Motion planning and posture control of multiple n-link doubly nonholonomic manipulators, Robotica, 35, 1, 1-25, (2017) · doi:10.1017/S0263574714002604
[39] Rubagotti, M.; Ferrara, A., Second order sliding mode control of a perturbed double integrator with state constraints, Proceedings of the 2010 American Control Conference, ACC 2010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.