×

Fractional order memristor no equilibrium chaotic system with its adaptive sliding mode synchronization and genetically optimized fractional order PID synchronization. (English) Zbl 1367.93128

Summary: This paper introduces a Fractional Order Memristor No Equilibrium (FOMNE) chaotic system and investigates its adaptive sliding mode synchronization. Firstly, the dynamic properties of the integer order memristor no equilibrium system are analyzed. The fractional order memristor no equilibrium system is then derived from the integer order model. Lyapunov exponents and bifurcation with fractional order are investigated. An adaptive sliding mode control algorithm is derived to globally synchronize the identical fractional order memristor systems and genetically optimized fractional order PID controllers are designed and used to synchronize the FOMNE systems. Finally, the fractional order memristor no equilibrium system is realized using FPGA.

MSC:

93B12 Variable structure systems
34H10 Chaos control for problems involving ordinary differential equations
93C40 Adaptive control/observation systems

Software:

Matlab; FOMNE

References:

[1] Geisel, T., Chaos, randomness and dimension, Nature, 298, 5872, 322-323 (1982) · doi:10.1038/298322a0
[2] Rössler, O. E., An equation for hyperchaos, Physics Letters A, 71, 2-3, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[3] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
[4] Chen, G.; Ueta, T., Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9, 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/s0218127499001024
[5] Liu, C.; Liu, T.; Liu, L.; Liu, K., A new chaotic attractor, Chaos, Solitons and Fractals, 22, 5, 1031-1038 (2004) · Zbl 1060.37027 · doi:10.1016/j.chaos.2004.02.060
[6] Sundarapandian, V.; Pehlivan, I., Analysis, control, synchronization, and circuit design of a novel chaotic system, Mathematical and Computer Modelling, 55, 7-8, 1904-1915 (2012) · Zbl 1255.93076 · doi:10.1016/j.mcm.2011.11.048
[7] Sundarapandian, V., Analysis and anti-Synchronization of a novel chaotic system via active and adaptive controllers, Journal of Engineering Science and Technology Review, 6, 4, 45-52 (2013)
[8] Pham, V.-T.; Volos, C.; Jafari, S.; Wei, Z.; Wang, X., Constructing a novel no-equilibrium chaotic system, International Journal of Bifurcation and Chaos, 24, 5 (2014) · Zbl 1296.34114 · doi:10.1142/s0218127414500734
[9] Vaidyanathan, S.; Volos, C., Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system, Archives of Control Sciences, 25, 3, 333-353 (2015) · Zbl 1446.93044 · doi:10.1515/acsc-2015-0022
[10] Chua, L. O., Memristor—the missing circuit element, IEEE Transactions on Circuit Theory, 18, 507-519 (1971)
[11] Chua, L. O.; Kang, S. M., Memristive devices and systems, Proceedings of the IEEE, 64, 2, 209-223 (1976)
[12] Biolek, Z.; Biolek, D.; Biolková, V., SPICE model of memristor with nonlinear dopant drift, Radioengineering, 18, 2, 210-214 (2009)
[13] Pino, R. E.; Bohl, J. W.; McDonald, N., Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices, Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH ’10), IEEE · doi:10.1109/NANOARCH.2010.5510936
[14] Rak, Á.; Cserey, G., Macromodeling of the memristor in SPICE, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29, 4, 632-636 (2010) · doi:10.1109/TCAD.2010.2042900
[15] Ishaq Ahamed, A.; Lakshmanan, M., Nonsmooth bifurcations, transient hyperchaos and hyperchaotic beats in a memristive Murali-Lakshmanan-Chua circuit, International Journal of Bifurcation and Chaos, 23, 6 (2013) · Zbl 1272.34058 · doi:10.1142/s0218127413500983
[16] Wang, S.; Wang, X.; Zhou, Y.; Han, B., A memristor-based hyperchaotic complex Lü system and its adaptive complex generalized synchronization, Entropy, 18, 2, article 58 (2016) · doi:10.3390/e18020058
[17] Idowu, B. A.; Vincent, U. E.; Njah, A. N., Synchronization of chaos in non-identical parametrically excited systems, Chaos, Solitons and Fractals, 39, 5, 2322-2331 (2009) · Zbl 1197.37031 · doi:10.1016/j.chaos.2007.06.128
[18] Vaidyanathan, S.; Rajagopal, K., Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic lorenz systems by active non-linear control, International Journal of Systems Signal Control and Engineering Application, 4, 3, 55-61 (2011) · doi:10.3923/ijssceapp.2011.55.61
[19] Sundarapandian, V.; Karthikeyan, R., Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control, European Journal of Scientific Research, 64, 1, 94-106 (2011)
[20] Sundarapandian, V.; Karthikeyan, R., Adaptive anti-synchronization of Uncertain Tigan and Li Systems, Journal of Engineering and Applied Sciences, 7, 1, 45-52 (2012) · doi:10.3923/jeasci.2012.45.52
[21] Majidabad, S. S.; Shandiz, H. T., Discrete-time terminal sliding mode control of chaotic Lorenz system, Journal of Control and Systems Engineering, 1, 1, 1-8 (2013)
[22] Njah, A. N., Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques, Nonlinear Dynamics, 61, 1-2, 1-9 (2010) · Zbl 1204.93097 · doi:10.1007/s11071-009-9626-5
[23] Onma, O. S.; Olusola, O. I.; Njah, A. N., Control and synchronization of chaotic and hyperchaotic lorenz systems via extended backstepping techniques, Journal of Nonlinear Dynamics, 2014 (2014) · Zbl 1364.37062 · doi:10.1155/2014/861727
[24] Wang, B.; Li, Y.; Zhu, D. L., Simplified sliding mode of a novel class of four-dimensional fractional-order chaos, International Journal of Control and Automation, 8, 8, 425-438 (2015) · doi:10.14257/ijca.2015.8.8.39
[25] Yin, C.; Dadras, S.; Zhong, S.-M.; Chen, Y., Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach, Applied Mathematical Modelling, 37, 4, 2469-2483 (2013) · Zbl 1349.93237 · doi:10.1016/j.apm.2012.06.002
[26] Liu, H.; Yang, J., Sliding-mode synchronization control for uncertain fractional-order chaotic systems with time delay, Entropy, 17, 6, 4202-4214 (2015) · doi:10.3390/e17064202
[27] Wang, S.; Yu, Y.; Diao, M., Hybrid projective synchronization of chaotic fractional order systems with different dimensions, Physica A: Statistical Mechanics and its Applications, 389, 21, 4981-4988 (2010) · Zbl 0765.22013 · doi:10.1016/j.physa.2010.06.048
[28] Herrmann, R., Fractional calculus (2014), World Scientific Publishing Co. · Zbl 1293.26001 · doi:10.1142/8934
[29] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods (2014), Singapore: World Scientific, Singapore
[30] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
[31] Diethelm, K., The Analysis of Fractional Differential Equations (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[32] Wang, X.; Chen, G., A chaotic system with only one stable equilibrium, Communications in Nonlinear Science and Numerical Simulation, 17, 3, 1264-1272 (2012) · doi:10.1016/j.cnsns.2011.07.017
[33] Wang, X.; Chen, G., Constructing a chaotic system with any number of equilibria, Nonlinear Dynamics, 71, 3, 429-436 (2013) · doi:10.1007/s11071-012-0669-7
[34] Wang, Z.; Cang, S.; Ochola, E. O.; Sun, Y., A hyperchaotic system without equilibrium, Nonlinear Dynamics, 69, 1-2, 531-537 (2012) · doi:10.1007/s11071-011-0284-z
[35] Leonov, G. A.; Kuznetsov, N. V., Hidden attractors in dynamical systems: from hidden oscillations in hilbert-kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in chua circuits, International Journal of Bifurcation and Chaos, 23, 1 (2013) · Zbl 1270.34003 · doi:10.1142/s0218127413300024
[36] Wang, Z.; Huang, X.; Shen, H., Control of an uncertain fractional order economic system via adaptive sliding mode, Neurocomputing, 83, 83-88 (2012) · doi:10.1016/j.neucom.2011.11.018
[37] Rajagopal, K.; Vaidyanathan, S.; Karthikeyan, A.; Duraisamy, P., Dynamic analysis and chaos suppression in a fractional order brushless DC motor, Electrical Engineering (2016) · doi:10.1007/s00202-016-0444-8
[38] Li, T.-Z.; Wang, Y.; Luo, M.-K., Control of fractional chaotic and hyperchaotic systems based on a fractional order controller, Chinese Physics B, 23, 8 (2014) · doi:10.1088/1674-1056/23/8/080501
[39] Li, R. H.; Chen, W. S., Fractional order systems without equilibria, Chinese Physics B, 22 (2013)
[40] Ivo, P., https://www.mathworks.com/matlabcentral/fileexchange/27336, Natick, Mass, USA: Math Works, Natick, Mass, USA
[41] Leonov, G.; Kuznetsov, N.; Kuznetsova, O.; Seldedzhi, S.; Vagaitsev, V., Hidden oscillations indynamical systems, Transactions on Systems and Control, 6, 54-67 (2011)
[42] Jafari, S.; Sprott, J. C.; Hashemi Golpayegani, S. M. R., Elementary quadratic chaotic flows with no equilibria, Physics Letters A, 377, 9, 699-702 (2013) · Zbl 1428.34059 · doi:10.1016/j.physleta.2013.01.009
[43] Petráš, I., Fractional—order feedback control of a DC motor, Journal of Electrical Engineering, 60, 3, 117-128 (2009)
[44] Zamani, M.; Karimi-Ghartemani, M.; Sadati, N.; Parniani, M., Design of a fractional order PID controller for an AVR using particle swarm optimization, Control Engineering Practice, 17, 12, 1380-1387 (2009) · doi:10.1016/j.conengprac.2009.07.005
[45] Djari, A.; Bouden, T.; Boulkroune, A., Design of a fractional order PID controller, (FOPID) for a class of fractional order MIMO system, Journal of Automation and Systems Engineering, 8, 1, 25-39 (2014)
[46] Vaidhyanathan, S.; Volos, C., Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system, Archives of Control Sciences, 25, 3, 333-353 (2015) · Zbl 1446.93044
[47] Li, Q.; Zeng, H.; Li, J., Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria, Nonlinear Dynamics, 79, 4, 2295-2308 (2015) · doi:10.1007/s11071-014-1812-4
[48] Hong, Q.-H.; Zeng, Y.-C.; Li, Z.-J., Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor, Wuli Xuebao/Acta Physica Sinica, 62, 23 (2013) · doi:10.7498/aps.62.230502
[49] Bao, B.; Jiang, P.; Wu, H.; Hu, F., Complex transient dynamics in periodically forced memristive Chua’s circuit, Nonlinear Dynamics, 79, 4, 2333-2343 (2015) · doi:10.1007/s11071-014-1815-1
[50] Pezeshki, C.; Elgar, S.; Krishna, R. C., Bispectral analysis of possessing chaotic motion, Journal of Sound and Vibration, 137, 3, 357-368 (1990) · Zbl 1235.74189 · doi:10.1016/0022-460x(90)90804-9
[51] Fouda, M. E.; Radwan, A. G., On the fractional-order memristor model, Journal of Fractional Calculus and Applications, 4, 1, 1-7 (2013) · Zbl 1488.34268
[52] Pu, Y.-F.; Yuan, X., Fracmemristor: fractional-order memristor, IEEE Access, 4, 1872-1888 (2016) · doi:10.1109/access.2016.2557818
[53] Khalil, H. K., Nonlinear Systems (2002), New York, NY, USA: Prentice Hall, New York, NY, USA · Zbl 1003.34002
[54] Guessas, L.; Benmahammed, K., Adaptive backstepping and pid optimized by genetic algorithm in control of Chaotic, International Journal of Innovative Computing, Information and Control, 7, 9, 5299-5312 (2011)
[55] Goldberg, D. E., Genetic Algorithms in Search, Optimization & Machine Learning (1989), Boston, Mass, USA: Addison-Wesley, Boston, Mass, USA · Zbl 0721.68056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.