×

Fractional integro-differential sliding mode control of a class of distributed-order nonlinear systems. (English) Zbl 1500.93018


MSC:

93B12 Variable structure systems
45J05 Integro-ordinary differential equations
26A33 Fractional derivatives and integrals
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Alkasassbeh, M.; Omar, Z.; Mebarek-Oudina, F.; Raza, J.; Chamkha, A., Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method, Heat Transf. Asian Res., 48, 4, 1225-1244 (2019) · doi:10.1002/htj.21428
[2] Atanackovic, T.; Budincevic, M.; Pilipovic, S., On a fractional distributed-order oscillator, J. Phys. A Math. Gen., 38, 30, 6703 (2005) · Zbl 1074.74030 · doi:10.1088/0305-4470/38/30/006
[3] Atanackovic, TM, On a distributed derivative model of a viscoelastic body, C.R. Mec., 331, 10, 687-692 (2003) · Zbl 1177.74093 · doi:10.1016/j.crme.2003.08.003
[4] Atanacković, TM; Oparnica, L.; Pilipović, S., On a nonlinear distributed order fractional differential equation, J. Math. Anal. Appl., 328, 1, 590-608 (2007) · Zbl 1115.34005 · doi:10.1016/j.jmaa.2006.05.038
[5] Clarke, FH; Ledyaev, YS; Stern, RJ; Wolenski, PR, Nonsmooth Analysis and Control Theory (2008), Berlin: Springer Science & Business Media, Berlin · Zbl 1047.49500
[6] Dadkhah, E.; Shiri, B.; Ghaffarzadeh, H.; Baleanu, D., Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods, J. Appl. Math. Comput., 63, 1, 29-57 (2020) · Zbl 1490.74071 · doi:10.1007/s12190-019-01307-5
[7] Diethelm, K.; Ford, NJ, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225, 1, 96-104 (2009) · Zbl 1159.65103 · doi:10.1016/j.cam.2008.07.018
[8] Efe, MÖ, Integral sliding mode control of a quadrotor with fractional order reaching dynamics, Trans. Inst. Meas. Control., 33, 8, 985-1003 (2011) · doi:10.1177/0142331210377227
[9] Farhan, M.; Omar, Z.; Mebarek-Oudina, F.; Raza, J.; Shah, Z.; Choudhari, R.; Makinde, O., Implementation of the one-step one-hybrid block method on the nonlinear equation of a circular sector oscillator, Comput. Math. Model., 31, 1, 116-132 (2020) · Zbl 1441.65063 · doi:10.1007/s10598-020-09480-0
[10] Fernández-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E., Asymptotic stability of distributed order nonlinear dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 48, 541-549 (2017) · Zbl 1510.34112 · doi:10.1016/j.cnsns.2017.01.020
[11] Jakovljević, B.; Pisano, A.; Rapaić, MR; Usai, E., On the sliding-mode control of fractional-order nonlinear uncertain dynamics, Int. J. Robust Nonlinear Control, 26, 4, 782-798 (2016) · Zbl 1333.93071 · doi:10.1002/rnc.3337
[12] Jensen, J.L.W.V.: Om konvekse funktioner og uligheder imellem middelvaerdier. Nyt Tidsskrift for Matematik 30, 49-69 (1905) https://www.jstor.org/stable/24528332
[13] Jensen, JLWV, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30, 175-193 (1906) · JFM 37.0422.02 · doi:10.1007/BF02418571
[14] Jiao, Z.; Chen, YQ, Stability of fractional-order linear time-invariant systems with multiple noncommensurate orders, Comput. Math. Appl., 64, 10, 3053-3058 (2012) · Zbl 1268.34018 · doi:10.1016/j.camwa.2011.10.014
[15] Jiao, Z., Chen, Y.Q., Podlubny, I.: Distributed-order dynamic systems: stability. Simulation, Applications and Perspectives, London (2012) · Zbl 1401.93005
[16] Kamal, S., Chalanga, A., Moreno, J.A., Fridman, L., Bandyopadhyay, B.: Higher order super-twisting algorithm. In: 2014 13th International Workshop on Variable Structure Systems (VSS), IEEE, pp 1-5 (2014)
[17] Kochubei, AN, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340, 1, 252-281 (2008) · Zbl 1149.26014 · doi:10.1016/j.jmaa.2007.08.024
[18] Lazović, G.; Vosika, Z.; Lazarević, M.; Simić-Krstić, J.; Koruga, D., Modeling of bioimpedance for human skin based on fractional distributed-order modified cole model, FME Transact., 42, 1, 74-81 (2014) · doi:10.5937/fmet1401075L
[19] Li, A.; Liu, G.; Luo, Y.; Yang, X., An indirect lyapunov approach to robust stabilization for a class of linear fractional-order system with positive real uncertainty, J. Appl. Math. Comput., 57, 1, 39-55 (2018) · Zbl 1393.93100 · doi:10.1007/s12190-017-1093-4
[20] Li, Y.; Chen, Y., Theory and implementation of distributed-order element networks, Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., 54808, 361-367 (2011)
[21] Li, Y., Chen, Y.Q.: Theory and implementation of weighted distributed order integrator. In: IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, IEEE, pp 119-124 (2012)
[22] Liu, L.; Feng, L.; Xu, Q.; Zheng, L.; Liu, F., Flow and heat transfer of generalized maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass Transf., 116, 104679 (2020) · doi:10.1016/j.icheatmasstransfer.2020.104679
[23] Mahmoud, GM; Farghaly, AA; Abed-Elhameed, TM; Aly, SA; Arafa, AA, Dynamics of distributed-order hyperchaotic complex van der pol oscillators and their synchronization and control, Eur. Phys. J. Plus, 135, 1, 1-16 (2020) · doi:10.1140/epjp/s13360-019-00006-1
[24] Mebarek-Oudina, F., Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Eng. Sci. Technol. Int. J., 20, 4, 1324-1333 (2017)
[25] Morgado, ML; Rebelo, M., Numerical approximation of distributed order reaction-diffusion equations, J. Comput. Appl. Math., 275, 216-227 (2015) · Zbl 1298.35242 · doi:10.1016/j.cam.2014.07.029
[26] Muñoz-Vázquez, AJ; Parra-Vega, V.; Sánchez-Orta, A., A novel continuous fractional sliding mode control, Int. J. Syst. Sci., 48, 13, 2901-2908 (2017) · Zbl 1386.93067 · doi:10.1080/00207721.2017.1348564
[27] Muñoz-Vázquez, AJ; Parra-Vega, V.; Sánchez-Orta, A., Non-smooth convex Lyapunov functions for stability analysis of fractional-order systems, Trans. Inst. Meas. Control., 41, 6, 1627-1639 (2019) · doi:10.1177/0142331218785694
[28] Muñoz-Vázquez, AJ; Fernández-Anaya, G.; Sánchez-Torres, JD; Meléndez-Vázquez, F., Predefined-time control of distributed-order systems, Nonlinear Dyn., 103, 3, 2689-2700 (2021) · Zbl 1517.93014 · doi:10.1007/s11071-021-06264-y
[29] Nesterov, Y., Introductory Lectures on Convex Optimization: A Basic Course (2013), Berlin: Springer Science & Business Media, Berlin · Zbl 1086.90045
[30] Patnaik, S.; Semperlotti, F., Application of variable-and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators, Nonlinear Dyn., 100, 1, 561-580 (2020) · doi:10.1007/s11071-020-05488-8
[31] Pérez-Ventura, U.; Fridman, L., Design of super-twisting control gains: a describing function based methodology, Automatica, 99, 175-180 (2019) · Zbl 1406.93076 · doi:10.1016/j.automatica.2018.10.023
[32] Pisano, A.; Rapaić, MR; Jeličić, ZD; Usai, E., Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics, Int. J. Robust Nonlinear Control, 20, 18, 2045-2056 (2010) · Zbl 1207.93079 · doi:10.1002/rnc.1565
[33] Pisano, A., Rapaić, M.R., Usai, E., Jeličić, Z.D.: Continuous finite-time stabilization for some classes of fractional order dynamics. In: International Workshop on Variable Structure Systems, IEEE, pp 16-21 (2012)
[34] Podlubny, I., Fractional Differential Equations (1998), Amsterdam: Elsevier, Amsterdam · Zbl 0922.45001
[35] Rayal, A.; Verma, SR, An approximate wavelets solution to the class of variational problems with fractional order, J. Appl. Math. Comput., 65, 1, 735-769 (2021) · Zbl 1475.34008 · doi:10.1007/s12190-020-01413-9
[36] Ross, B.; Samko, SG; Love, ER, Functions that have no first order derivative might have fractional derivatives of all orders less than one, Real Anal. Exch., 20, 1, 140-157 (1994) · Zbl 0820.26002 · doi:10.2307/44152475
[37] Taghavian, H.; Tavazoei, MS, Stability analysis of distributed-order nonlinear dynamic systems, Int. J. Syst. Sci., 49, 3, 523-536 (2018) · Zbl 1385.93066 · doi:10.1080/00207721.2017.1412535
[38] Toaldo, B., Lévy mixing related to distributed order calculus, subordinators and slow diffusions, J. Math. Anal. Appl., 430, 2, 1009-1036 (2015) · Zbl 1319.60100 · doi:10.1016/j.jmaa.2015.05.024
[39] Wang, F., Liu, X.: Pseudo-state estimation for fractional order neural networks. Neural Process. Lett. pp 1-14 (2021)
[40] Wei, L.; Liu, L.; Sun, H., Stability and convergence of a local discontinuous galerkin method for the fractional diffusion equation with distributed order, J. Appl. Math. Comput., 59, 1, 323-341 (2019) · Zbl 1422.65271 · doi:10.1007/s12190-018-1182-z
[41] Yang, W.; Chen, X.; Zhang, X.; Zheng, L.; Liu, F., Flow and heat transfer of viscoelastic fluid with a novel space distributed-order constitution relationship, Comput. Math. Appl., 94, 94-103 (2021) · Zbl 1524.76021 · doi:10.1016/j.camwa.2021.04.023
[42] Yang, Z.; Zhang, J.; Niu, Y., Finite-time stability of fractional-order bidirectional associative memory neural networks with mixed time-varying delays, J. Appl. Math. Comput., 63, 1, 501-522 (2020) · Zbl 1475.34042 · doi:10.1007/s12190-020-01327-6
[43] Zaky, MA; Machado, JT, On the formulation and numerical simulation of distributed-order fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 52, 177-189 (2017) · Zbl 1510.49018 · doi:10.1016/j.cnsns.2017.04.026
[44] Želi, V.; Zorica, D., Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-order heat conduction law, Phys. A, 492, 2316-2335 (2018) · Zbl 1514.80002 · doi:10.1016/j.physa.2017.11.150
[45] Zhou, F.; Zhao, Y.; Li, Y.; Chen, Y., Design, implementation and application of distributed order pi control, ISA Trans., 52, 3, 429-437 (2013) · doi:10.1016/j.isatra.2012.12.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.