×

Identification of multilayered particles from scattering data by a clustering method. (English) Zbl 1082.78504

A multilayered particle is illuminated by plane acoustic or electromagnetic waves of one or several frequencies. We consider the inverse scattering problem for the identification of the layers and of the refraction coefficients of the scatterer in a non-Born region of scattering. Local deterministic and global probabilistic minimization methods are studied. A special reduction procedure is introduced to reduce the dimensionality of the minimization space. Deep’s and the multilevel single-linkage methods for global minimization are used for the solution of the inverse problem. Their performance is analyzed for various multilayer configurations.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A45 Diffraction, scattering

Software:

BRENT

References:

[1] C. Athanasiadis, A. G. Ramm, and I. G. Stratis, Inverse acoustic scattering by a layered obstacle, in Inverse Problems, Tomography, and Image Processing, edited by A. RammPlenum Press, New York, 1998, pp. 1-8.; C. Athanasiadis, A. G. Ramm, and I. G. Stratis, Inverse acoustic scattering by a layered obstacle, in Inverse Problems, Tomography, and Image Processing, edited by A. RammPlenum Press, New York, 1998, pp. 1-8. · Zbl 0906.35113
[2] J. Barhen, and, V. Protopopescu, Generalized TRUST algorithm for global optimization, in, State of the Art in Global Optimization, edited by, C. Floudas, Kluwer, Dordrecht, 1996.; J. Barhen, and, V. Protopopescu, Generalized TRUST algorithm for global optimization, in, State of the Art in Global Optimization, edited by, C. Floudas, Kluwer, Dordrecht, 1996. · Zbl 0871.90080
[3] Barhen, J.; Protopopescu, V.; Reister, D., TRUST: A deterministic algorithm for global optimization, Science, 276, 1094-1097 (1997) · Zbl 1226.90073
[4] Biegler, L. T., Large-scale optimization with applications, IMA Volumes in Mathematics and Its Applications, 92-94 (1997) · Zbl 0872.00046
[5] Boender, C. G.E.; Rinnooy Kan, A. H.G., Bayesian stopping rules for multistart global optimization methods, Math. Progr., 37, 59-80 (1987) · Zbl 0626.90079
[6] Bomze, I. M., Developments in Global Optimization (1997)
[7] Brent, P., Algorithms for Minimization without Derivatives (1973) · Zbl 0245.65032
[8] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1992) · Zbl 0760.35053
[9] D. Colton and P. Monk, The inverse scattering problem for acoustic waves in an inhomogeneous medium, in Inverse Problems in Partial Differential Equations, edited by D. Colton, R. Ewing, and W. RundellSIAM Publ. Philadelphia, 1990, pp. 73-84.; D. Colton and P. Monk, The inverse scattering problem for acoustic waves in an inhomogeneous medium, in Inverse Problems in Partial Differential Equations, edited by D. Colton, R. Ewing, and W. RundellSIAM Publ. Philadelphia, 1990, pp. 73-84. · Zbl 0705.35152
[10] Deep, K.; Evans, D. J., A Parallel Random Search Global Optimization Method (1994) · Zbl 1049.68567
[11] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983) · Zbl 0579.65058
[12] Dixon, L. C.W.; Jha, M., Parallel algorithms for global optimization, J. Opt. Theor. Appl., 79, 385-395 (1993) · Zbl 0797.90090
[13] Ewing, W. M.; Jardetzky, W. S.; Press, F., Elastic Waves in Layered Media (1957) · Zbl 0083.23705
[14] R. Fletcher, Practical Methods of Optimization, Vol, 2, Wiley, New York.; R. Fletcher, Practical Methods of Optimization, Vol, 2, Wiley, New York. · Zbl 0905.65002
[15] S. Gutman, and, A. G. Ramm, Application of the hybrid stochastic-deterministic minimization method to a surface data inverse scattering problem, Fields Institute Commun, to appear.; S. Gutman, and, A. G. Ramm, Application of the hybrid stochastic-deterministic minimization method to a surface data inverse scattering problem, Fields Institute Commun, to appear. · Zbl 0960.35110
[16] Haupt, R. L.; Haupt, S. E., Practical Genetic Algorithms (1998) · Zbl 0940.68107
[17] Hestenes, M., Conjugate direction methods in optimization, Applications of Mathematics, 12 (1980) · Zbl 0439.49001
[18] Hu, F. Q., A spectral boundary integral equation method for the 2D Helholtz equation, J. Comp. Phys., 120, 340-347 (1995) · Zbl 0840.65115
[19] Jacobs, D. A.H., The State of the Art in Numerical Analysis (1977) · Zbl 0469.65016
[20] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Science, 220, 671-680 (1983) · Zbl 1225.90162
[21] Kirkpatrick, S., J. Stat. Phys., 34, 975-986 (1984)
[22] Polak, E., Computational Methods in Optimization (1971) · Zbl 0257.90055
[23] Ramm, A. G., Scattering by Obstacles (1986) · Zbl 0607.35006
[24] A. G. Ramm, Multidimensional Inverse Scattering Problems, Longman/Wiley, New York, 1992, Expanded Russian edition, MIR, Moscow, 1994.; A. G. Ramm, Multidimensional Inverse Scattering Problems, Longman/Wiley, New York, 1992, Expanded Russian edition, MIR, Moscow, 1994. · Zbl 0818.35140
[25] Rinnooy Kan, A. H.G.; Timmer, G. T., Stochastic global optimization methods. I. Clustering methods, Math. Progr., 39, 27-56 (1987) · Zbl 0634.90066
[26] Rinnooy Kan, A. H.G.; Timmer, G. T., Stochastic global optimization methods. II. Multilevel methods, Math. Progr., 39, 57-78 (1987) · Zbl 0634.90067
[27] P. C. Sabatier, On the Scattering by Discontinuous Media. Inverse problems in Partial Differential Equations. edited by D. Colton, R. Ewing, and W. RundellSIAM Publ. Philadelphia, 1990, pp. 85-100.; P. C. Sabatier, On the Scattering by Discontinuous Media. Inverse problems in Partial Differential Equations. edited by D. Colton, R. Ewing, and W. RundellSIAM Publ. Philadelphia, 1990, pp. 85-100. · Zbl 0705.35096
[28] Schuster, G. T., A fast exact numerical solution for the acoustic response of concentric cylinders with penetrable interfaces, J. Acoust. Soc. Am., 87, 495-502 (1990)
[29] Zakovic, S.; Ulanowski, Z.; Bartholomew-Biggs, M. C., Application of global optimization to particle identification using light scattering, Inverse Problems, 14, 1053-1067 (1998) · Zbl 0909.35151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.