×

Least squares solution of the linear operator equation. (English) Zbl 1350.65032

The paper deals with the least squares solution of the linear operator equation \((*)\) \({\mathcal{F}}(X)=C\), where \({\mathcal{F}}: \mathbb C^{m \times n} \longrightarrow \mathbb C^{p \times q}\) is surjective and \(C \in \mathbb C^{p \times q}\) is given. In this respect, the author extends the classical conjugate gradient least squares algorithm to the new context and proves its convergence to the minimal norm solution of the Problem \((*)\).

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses
15A06 Linear equations (linear algebraic aspects)
15A24 Matrix equations and identities

Software:

LSQR; CRAIG
Full Text: DOI

References:

[1] Epton, M.: Methods for the solution of \[AXD-BXC = E\] AXD-BXC=E and its applications in the numerical solution of implicit ordinary differential equations. BIT 20, 341-345 (1980) · Zbl 0452.65015 · doi:10.1007/BF01932775
[2] Hyland, C., Bernstein, D.: The optimal projection equations for fixed-order dynamic compensation. IEEE Trans. Control AC-29, 1034-1037 (1984) · Zbl 0555.93069 · doi:10.1109/TAC.1984.1103418
[3] Calvetti, D., Reichel, L.: Application of ADI iterative methods to the restoration of noisy images. SIAM J. Matrix Anal. Appl. 17, 165-186 (1996) · Zbl 0849.65101 · doi:10.1137/S0895479894273687
[4] Fletcher, L.R., Kuatsky, J., Nichols, N.K.: Eigenstructure assignment in descriptor systems. IEEE Trans. Autom. Control 31, 1138-1141 (1986) · Zbl 0608.93031 · doi:10.1109/TAC.1986.1104189
[5] Dai, L.: Singular Control Systems. Springer, New York (1989) · Zbl 0669.93034 · doi:10.1007/BFb0002475
[6] Duan, G.R.: The solution to the matrix equation \[AV+BW=EVJ+R\] AV+BW=EVJ+R. Appl. Math. Lett. 17, 1197-1202 (2004) · Zbl 1065.15015 · doi:10.1016/j.aml.2003.05.012
[7] Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy—a survey and some new results. Automatica 26, 459-474 (1990) · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[8] Chan, H., Lam, J., Ho, D.W.C.: Robust eigenvalue assignment in second-order systems: a gradient flow approach. Optim. Control Appl. Methods 18, 283-296 (1997) · Zbl 0916.93029 · doi:10.1002/(SICI)1099-1514(199707/08)18:4<283::AID-OCA603>3.0.CO;2-Q
[9] Duan, G.R., Zhou, B.: Solution to the second-order Sylvester matrix equation \[MVF^2-DVF-KV=BW\] MVF2-DVF-KV=BW. IEEE Trans. Autom. Control 51, 805-809 (2006) · Zbl 1366.15011 · doi:10.1109/TAC.2006.874989
[10] Hajarian, M.: A finite iterative method for solving the general coupled discrete-time periodic matrix equations. Circuits Syst. Signal Process. 34, 105-125 (2015) · Zbl 1341.93055 · doi:10.1007/s00034-014-9842-1
[11] Hajarian, M.: A gradient-based iterative algorithm for generalized coupled Sylvester matrix equations over generalized centro-symmetric matrices. Trans. Inst. Meas. Control 36, 252-259 (2014) · doi:10.1177/0142331213497499
[12] Hajarian, M.: Developing the CGLS algorithm for the least squares solutions of the general coupled matrix equations. Math. Methods Appl. Sci. 37, 2782-2798 (2014) · Zbl 1323.65041 · doi:10.1002/mma.3017
[13] Hajarian, M.: Finite algorithms for solving the coupled Sylvester-conjugate matrix equations over reflexive and Hermitian reflexive matrices. Int. J. Syst. Sci. 46, 488-502 (2015) · Zbl 1335.65044 · doi:10.1080/00207721.2013.790999
[14] Hajarian, M.: Matrix form of the CGS method for solving general coupled matrix equations. Appl. Math. Lett. 34, 37-42 (2014) · Zbl 1314.65064 · doi:10.1016/j.aml.2014.03.013
[15] Hajarian, M.: Solving the general coupled and the periodic coupled matrix equations via the extended QMRCGSTAB algorithms. Comput. Appl. Math. 33, 349-362 (2014) · Zbl 1307.65054 · doi:10.1007/s40314-013-0065-z
[16] Zhou, B., Duan, G.R.: An explicit solution to the matrix equation \[AX-XF=BY\] AX-XF=BY. Linear Algebra Appl. 402, 345-366 (2005) · Zbl 1076.15016 · doi:10.1016/j.laa.2005.01.018
[17] Zhou, B., Duan, G.R., Li, Z.Y.: Gradient based iterative algorithm for solving coupled matrix equations. Syst. Control Lett. 58, 327-333 (2009) · Zbl 1159.93323 · doi:10.1016/j.sysconle.2008.12.004
[18] Peng, Z., Xin, H.: The reflexive least squares solutions of the general coupled matrix equations with a submatrix constraint. Appl. Math. Comput. 225, 425-445 (2013) · Zbl 1336.65074
[19] Hajarian, M., Dehghan, M.: The generalized centro-symmetric and least squares generalized centro-symmetric solutions of the matrix equation \[AYB + CY^TD = E\] AYB+CYTD=E. Math. Meth. Appl. Sci. 34, 1562-1579 (2011) · Zbl 1228.65066 · doi:10.1002/mma.1459
[20] Dehghan, M., Hajarian, M.: The general coupled matrix equations over generalized bisymmetric matrices. Linear Algebra Appl. 432, 1531-1552 (2010) · Zbl 1187.65042 · doi:10.1016/j.laa.2009.11.014
[21] Dehghan, M., Hajarian, M.: An iterative method for solving the generalized coupled Sylvester matrix equations over generalized bisymmetric matrices. Appl. Math. Model. 34, 639-654 (2010) · Zbl 1185.65054 · doi:10.1016/j.apm.2009.06.018
[22] Hajarian, M.: Matrix iterative methods for solving the Sylvester-transpose and periodic Sylvester matrix equations. J. Franklin Inst. 350, 3328-3341 (2013) · Zbl 1293.93289 · doi:10.1016/j.jfranklin.2013.07.008
[23] Wang, Q.W., Woude, J.W., Chang, H.X.: A system of real quaternion matrix equations with applications. Linear Algebra Appl. 431, 2291-2303 (2009) · Zbl 1180.15019 · doi:10.1016/j.laa.2009.02.010
[24] Wang, Q.W., Li, C.K.: Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl. 430, 1626-1640 (2009) · Zbl 1158.15010 · doi:10.1016/j.laa.2008.05.031
[25] Wang, Q.W., Chang, H.X., Ning, Q.: The common solution to six quaternion matrix equations with applications. Appl. Math. Comput. 198, 209-226 (2008) · Zbl 1141.15016
[26] Wang, Q.W., Zhang, F.: The reflexive re-nonnegative definite solution to a quaternion matrix equation. Electron. J. Linear Algebra 17, 88-101 (2008) · Zbl 1147.15012
[27] Zhou, B., Duan, G.R.: An explicit solution to the matrix equation \[AX-XF=BY\] AX-XF=BY. Linear Algebra Appl. 402, 345-366 (2005) · Zbl 1076.15016 · doi:10.1016/j.laa.2005.01.018
[28] Zhou, B., Lam, J., Duan, G.R.: On Smith-type iterative algorithms for the Stein matrix equation. Appl. Math. Lett. 22, 1038-1044 (2009) · Zbl 1179.15016 · doi:10.1016/j.aml.2009.01.012
[29] Gu, C., Xue, H.: A shift-splitting hierarchical identification method for solving Lyapunov matrix equations. Linear Algebra Appl. 430, 1517-1530 (2009) · Zbl 1169.65037 · doi:10.1016/j.laa.2008.01.010
[30] Ding, F., Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50, 1216-1221 (2005) · Zbl 1365.65083 · doi:10.1109/TAC.2005.852558
[31] Ding, F., Liu, P.X., Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle. Appl. Math. Comput. 197, 41-50 (2008) · Zbl 1143.65035
[32] Ding, F., Chen, T.: Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41, 315-325 (2005) · Zbl 1073.93012 · doi:10.1016/j.automatica.2004.10.010
[33] Ding, F., Chen, T.: Hierarchical least squares identification methods for multivariable systems. IEEE Trans. Autom. Control 50, 397-402 (2005) · Zbl 1365.93551 · doi:10.1109/TAC.2005.843856
[34] Li, S.K., Huang, T.Z.: LSQR iterative method for generalized coupled Sylvester matrix equations. Appl. Math. Model. 36, 3545-3554 (2012) · Zbl 1252.65156 · doi:10.1016/j.apm.2011.10.030
[35] Hajarian, M.: A matrix LSQR algorithm for solving constrained linear operator equations. Bull. Iran. Math. Soc. 40, 41-53 (2014) · Zbl 1302.65092
[36] Zhou, B., Lam, J., Duan, G.R.: Gradient-based maximal convergence rate iterative method for solving linear matrix equations. Int. J. Comput. Math. 87, 515-527 (2010) · Zbl 1188.65058 · doi:10.1080/00207160802123458
[37] Peng, Z.: The reflexive least squares solutions of the matrix equation \[A_1X_1B_1+A_2X_2B_2+\] A1X1B1+A2X2B \[2+..+A_lX_lB_l=C\]+AlXlBl=C with a submatrix constraint. Numer. Algorithms 64, 455-480 (2013) · Zbl 1281.65071 · doi:10.1007/s11075-012-9674-7
[38] Wu, A.G., Lv, L.L., Hou, M.Z.: Finite iterative algorithms for a common solution to a group of complex matrix equations. Appl. Math. Comput. 218, 1191-1202 (2011) · Zbl 1229.65071
[39] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, NewYork (1991) · Zbl 0729.15001 · doi:10.1017/CBO9780511840371
[40] Wang, R.C.: Funct. Anal. Optim. Theory. Beijing University of Aeronautics and Astronautics Press, Beijing (2003)
[41] Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996) · Zbl 0847.65023 · doi:10.1137/1.9781611971484
[42] Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43-71 (1982) · Zbl 0478.65016 · doi:10.1145/355984.355989
[43] Bai, Z.-Z.: On Hermitian and skew-Hermitian splitting iteration methods for continuous Sylvester equations. J. Comput. Math. 29, 185-198 (2011) · Zbl 1249.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.