×

Parallel concatenated convolutional codes from linear systems theory viewpoint. (English) Zbl 1347.93141

Summary: The aim of this work is to characterize two models of concatenated convolutional codes based on the theory of linear systems. The problem we consider can be viewed as the study of composite linear system from the classical control theory or as the interconnection from the behavioral system viewpoint. In this paper, we provide an input-state-output representation of both models and introduce some conditions for such representations to be both controllable and observable. We also introduce a lower bound on their free distances and the column distances.

MSC:

93C05 Linear systems in control theory
93B15 Realizations from input-output data

References:

[1] Massey, James L.; Sain, Michael K., Codes, automata, and continuous systems: explicit interconnections, IEEE Trans. Automat. Control, 12, 6, 644-650 (1967)
[2] Massey, James L.; Sain, Michael K., Inverses of linear sequential circuits, IEEE Trans. Comput., 17, 4, 330-337 (1968) · Zbl 0169.01501
[3] Omura, Jim K., On the Viterbi decoding algorithm, IEEE Trans. Inform. Theory, 15, 1, 177-179 (1969)
[4] Omura, Jim K., Optimal receiver design for convolutional codes and channels with memory via control theoretical concepts, Inform. Sci., 3, 3, 243-266 (1971) · Zbl 0221.94014
[5] David Forney, G., Convolutional codes I: algebraic structure, IEEE Trans. Inform. Theory, 16, 6, 720-738 (1970) · Zbl 0205.20702
[6] David Forney, G., Structural analysis of convolutional codes via dual codes, IEEE Trans. Inform. Theory, 19, 4, 512-518 (1973) · Zbl 0261.94014
[7] Rosenthal, Joachim, Connections between linear systems and convolutional codes, (Marcus, Brian; Rosenthal, Joachim, Codes, Systems and Graphical Models. Codes, Systems and Graphical Models, The IMA Volumes in Mathematics and its Applications, vol. 123 (2001), Springer-Verlag: Springer-Verlag New York), 39-66 · Zbl 0993.94559
[8] Rosenthal, Joachim; Smarandache, Roxana, Construction of convolutional codes using methods from linear systems theory, (Proccedings of the 35th Allerton Conference on Communications, Control and Computing (1997), Allerton House: Allerton House Monticello, IL), 953-960
[9] Rosenthal, Joachim; York, Eric V., BCH convolutional codes, IEEE Trans. Inform. Theory, 45, 6, 1833-1844 (1999) · Zbl 0958.94035
[11] Willems, Jan C., Systems theoretic models for the analysis of physical systems, Ric. Autom., 10, 71-106 (1979) · Zbl 0938.37525
[12] Willems, Jan C., From time series to linear system — part I. finite dimensional linear time invariant systems, Automatica, 22, 5, 561-580 (1986) · Zbl 0604.62090
[13] Willems, Jan C., Models for dynamics, (Kirchgraber, U.; Walther, H. O., Dynamics Reported, Vol. 2 (1989), John Willey & Sons Ltd. and B.G. Teubner), 171-269 · Zbl 0685.93002
[14] Elias, Peter, Error free coding, Trans. IRE Prof. Group Inform. Theory, 4, 4, 29-37 (1954)
[15] David Forney, G., Concatenated codes. Technical Report 440, Research Laboratory of Electronics (1965), Massachusetts Institute of Technology: Massachusetts Institute of Technology Cambridge, MA, December
[16] (Corazza, Giovanni Emanuele, Digital Satellite Communications (2007), Springer: Springer New York, NY)
[17] Andrews, Kenneth S.; Divsalar, Dariush; Dolinar, Sam; Hamnkins, Jon; Jones, Christopher R.; Pollara, Fabrizio, The development of turbo codes and LDPC codes for deep-space applications, Proc. IEEE, 95, 11, 2142-2156 (2007)
[18] McEliece, Robert J.; Swanson, Laif, Reed-Solomon codes and the exploration on the solar system, (Wicker, Stephen B.; Bhargava, Vijay K., Reed-Solomon Codes and Their Applications (1994), IEEE Press: IEEE Press Piscataway, NY), 25-40, chapter 3 · Zbl 1126.94365
[19] Berrou, Claude; Glavieux, Alain; Thitimajshima, Punya, Near Shannon limit error-correcting coding and decoding: turbo codes (1), (Proceedings of the IEEE International Conference on Communication. Proceedings of the IEEE International Conference on Communication, ICC’93 (1993), IEEE: IEEE Geneva, Switzerland), 1064-1070
[20] Douillard, Catherine; Berrou, Claude, Turbo codes with rate-\(m /(m + 1)\) constituent convolutional codes, IEEE Trans. Comput., 53, 10, 1630-1638 (2005)
[22] Gracie, Ken; Hamon, Marie-Hélène, Turbo and turbo-like codes: principles and applications in telecomunications, Proc. IEEE, 95, 6, 1228-1254 (2007)
[23] Johannesson, Rolf; Zigangirov, Kamil Sh., Fundamentals of Convolutional Coding (1999), IEEE Press: IEEE Press New York, NY · Zbl 0964.94024
[24] Piret, Philippe, Convolutional Codes, an Algebraic Approach (1988), MIT Press: MIT Press Boston, MA · Zbl 0986.94510
[25] McEliece, Robert J., The algebraic theory of convolutional codes, (Pless, V. S.; Huffman, W. C., Handbook of Coding Theory (1998), Elsevier, North-Holland), 1065-1138 · Zbl 0967.94020
[26] Rosenthal, Joachim; Schumacher, J. M.; York, Eric V., On behaviors and convolutional codes, IEEE Trans. Inform. Theory, 42, 6, 1881-1891 (1996) · Zbl 0876.94042
[27] Johannesson, Rolf; Wan, Zhe-Xian, A linear algebra approach to minimal convolutional encoders, IEEE Trans. Inform. Theory, 39, 4, 1219-1233 (1993) · Zbl 0801.94018
[28] Smarandache, Roxana; Gluesing-Luerssen, Heide; Rosenthal, Joachim, Constructions of MDS-convolutional codes, IEEE Trans. Inform. Theory, 47, 5, 2045-2049 (2001) · Zbl 0999.94036
[29] David Forney, G., Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Control, 13, 3, 493-520 (1975) · Zbl 0269.93011
[30] Kalman, Rudolf Emil; Falb, Peter L.; Arbib, Michael A., Topics in Mathematical System Theory (1969), McGraw-Hill: McGraw-Hill New York, NY · Zbl 0231.49001
[31] Hautus, M. L.J., Controllability and observability condition for linear autonomous systems, Proc. Ned. Akad. Wet. A, 72, 443-448 (1969) · Zbl 0188.46801
[32] Hutchinson, Ryan; Rosenthal, Joachim; Smarandache, Roxana, Convolutional codes with maximum distance profile, Systems Control Lett., 54, 1, 53-63 (2005) · Zbl 1129.94311
[33] Hutchinson, Ryan D., Generic Properties of Convolutional Codes (2006), Department of Mathematics, University of Notre Dame: Department of Mathematics, University of Notre Dame Indiana, USA, (Ph.D. thesis)
[34] Viterbi, Andrew J., Convolutional codes and their performance in communications sytems, IEEE Trans. Commun. Technol., 19, 5, 751-772 (1971)
[35] Chevillat, Pierre R.; Costello, Daniel J., Distance and computation in sequential decoding, IEEE Trans. Commun., 24, 4, 440-447 (1976) · Zbl 0343.94013
[36] Rosenthal, Joachim; Smarandache, Roxana, Maximum distance separable convolutional codes, Appl. Algebra Engrg. Comm. Comput., 10, 1, 15-32 (1999) · Zbl 0956.94016
[37] Kailath, Thomas, Linear Systems (1980), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0454.93001
[38] Antsaklis, Panos J.; Michel, Anthony N., Linear Systems (2006), Birkhäuser: Birkhäuser Boston, MA · Zbl 1189.93001
[39] Benedetto, Sergio; Montorsi, Guido, Design of parallel concatenated convolutional codes, IEEE Trans. Commun., 44, 5, 591-600 (1996) · Zbl 0996.94527
[40] Benedetto, Sergio; Montorsi, Guido, Unveiling turbo codes: some results on parallel concatenated coding schemes, IEEE Trans. Inform. Theory, 42, 2, 409-428 (1996) · Zbl 0854.94021
[41] Dahleh, Mohammed; Dahleh, Munther A.; Verghese, George, Lecturess on Dynamic Systems and Control (2011), MIT OpenCourseWare: MIT OpenCourseWare Boston, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.