×

Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behavior. (English) Zbl 0876.73023

We examine the possibility of a model of non-local inelasticity on thermodynamic grounds in the absence of higher-order stresses or additional kinematic entities. By considering a material that cannot support higher-order stresses, it is found that thermodynamics does not allow an explicit nonlocal dependence in the free-energy, and hence the stress and entropy response, but allows it in the strength and internal variable rate response. Rate-independent plasticity presents its own peculiarities in the proof of this result, which are also inherent in deriving the constitutive restrictions for the local material. An account of the basic thermodynamic framework and the reasoning used in these proofs are provided in listing the result for the conventional rate-independent solid. This procedure represents the building blocks for the derivation of the constitutive restrictions of the non-local theory, in which second-deformation-gradient-dependent constitutive postulates for inelastic materials are introduced. The general considerations are utilized to illustrate the constitutive structure of a rate-independent metal single crystal deforming by multiple slip.

MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74A15 Thermodynamics in solid mechanics
Full Text: DOI

References:

[1] Acharya, A., Plasticity and non-simple materials, (Ph.D. thesis (1994), University of Illinois at Urbana-Champaign)
[2] Acharya, A.; Shawki, T. G., The Clausius-Duhem inequality and the structure of rate-independent plasticity, Int. J. of Plasticity (1995), (to appear) · Zbl 0858.73022
[3] Atkin, R. J.; Craine, R. E., Continuum theories of mixtures: basic theory and historical development, Quart. J. Mech. Appl. Math., 29, 209-244 (1976) · Zbl 0339.76003
[4] Bazant, Z. P.; Belytschko, T. B., Wave propagation in a strain-softening bar: exact solution, ASCE J. Engnr Mech., 111, 381-389 (1985)
[5] Bazant, Z. P.; Belytschko, T. B.; Chang, T. P., Continuum theory for strain softening, ASCE J. Engng Mech., 110, 1666-1692 (1984)
[6] Bever, M. B.; Holt, D. L.; Titchener, A. L., The stored energy of cold work, (Chalmers, B.; etal., Progress in Materials Science, Vol. 17 (1973), Pergamon Press)
[7] Bowen, R. M., Theories of mixtures, (Eringen, A. C., Continuum Physics, 3 (1976)), 1-127 · Zbl 0181.53902
[8] Coleman, B. D., Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17, 1-46 (1964)
[9] Coleman, B. D., Thermodynamics, strain impulses and viscoelasticity, Arch. Rat. Mech. Anal., 17, 230-254 (1964) · Zbl 0125.13603
[10] Coleman, B. D.; Dill, E., Thermodynamic restrictions on the constitutive equations of electromagnetic theory, Z.A.M.P., 22, 691-702 (1971) · Zbl 0218.35072
[11] Coleman, B. D.; Dill, E. H., On the thermodynamics of electromagnetic fields in materials with memory, Arch. Rat. Mech. Anal., 41, 132-162 (1971) · Zbl 0218.35072
[12] Coleman, B. D.; Gurtin, M. E., Equipresence and constitutive equations for rigid heat conductors, Z.A.M.P., 18, 199-208 (1967)
[13] Coleman, B. D.; Gurtin, M. E., Thermodynamics with internal state variables, J. Chem. Phys., 47, 597-613 (1967)
[14] Coleman, B. D.; Hodgdon, M. L., On shear bands in ductile materials, Arch. Rat. Mech. Anal., 90, 219-249 (1985) · Zbl 0625.73041
[15] Coleman, B. D.; Mizel, V. J., Thermodynamics and departures from Fourier’s law of heat conduction, Arch. Rat. Mech. Anal., 13, 245-261 (1963) · Zbl 0114.44905
[16] Coleman, B. D.; Mizel, V. J., Existence of caloric equations of state in thermodynamics, J. Chem. Phys., 40, 1116-1125 (1964)
[17] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal., 13, 167-178 (1963) · Zbl 0113.17802
[18] Coleman, B. D.; Owen, D. R.; Serrin, J., The second law of thermodynamics for systems with approximate cycles, Arch. Rat. Mech. Anal., 77, 103-142 (1981) · Zbl 0474.73002
[19] Fleck, N. A.; Hutchinson, J. W., A phenomenological theory for strain gradient effects in plasticity, J. Mech. Phys. Solids, 41, 1825-1857 (1993) · Zbl 0791.73029
[20] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42, 475-487 (1994)
[21] Fox, N., On the continuum theories of dislocations and plasticity, Quart. J. Appl. Math., XXI, 67-75 (1968) · Zbl 0155.53601
[22] Green, A. E.; Naghdi, P. M., A general theory of an elastic-plastic continuum, Arch. Rat. Mech. Anal., 18, 251-281 (1965) · Zbl 0133.17701
[23] Gurtin, M. E., Thermodynamics and the possibility of spatial interaction in elastic materials, Arch. Rat. Mech. Anal., 19, 335-342 (1965) · Zbl 0166.44801
[24] Gurtin, M. E., Thermodynamics and the possibility of spatial interaction in rigid heat conductors, Arch. Rat. Mech. Anal., 18, 335-342 (1965) · Zbl 0166.44801
[25] Hill, R., Uniqueness in general boundary-value problems for elastic or inelastic solids, J. Mech. Phys. Solids, 9, 114-130 (1958) · Zbl 0139.42103
[26] Hill, R., Some basic principles in the mechanics of solids without a natural time, J. Mech. Phys. Solids, 7, 209-225 (1959) · Zbl 0086.17301
[27] Kestin, J.; Rice, J. R., Paradoxes in the application of thermodynamics to strained solids, (Stuart, E. B.; etal., A Critical Review of Thermodynamics (1970), Mono Book Corporation: Mono Book Corporation Baltimore), 275-298
[28] Kratochvil, J.; Dillon, O. W., Thermodynamics of elastic-plastic materials as a theory with internal state variables, J. Appl. Phys., 40, 3207-3218 (1969)
[29] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[30] Lubliner, J., On the structure of rate equations of materials with internal variables, Acta Mech., 17, 109-119 (1973) · Zbl 0279.73002
[31] Mühlhaus, H. B., Application of cesserat theory in numerical solutions of limit load problems, Inginuer Archive, 59, 124-137 (1989)
[32] Mühlhaus, H. B.; Vardoulakis, I., The thickness of shear bands in granular materials, Geotechnique, 37, 271-283 (1987)
[33] Müller, I. A., A thermodynamic theory of mixtures of fluids, Arch. Rat. Mech. Anal., 28, 1-39 (1968) · Zbl 0157.56703
[34] Nemat-Nasser, S., Phenomenological theories of elastoplasticity and strain localization at high strain rates, Appl. Mech. Rev., 45, 3, 17-43 (1992)
[35] Noll, W., A mathematical theory of the mechanical behavior of continuous media, Arch. Rat. Mech. Anal., 2, 197-226 (1958) · Zbl 0083.39303
[36] Owen, D. R., Thermodynamics of materials with elastic range, Arch. Rat. Mech. Anal., 31, 91-112 (1968) · Zbl 0169.28003
[37] Perzyna, P., Thermodynamic theory of viscoplasticity, (Advances in Applied Mechanics, Vol. 11 (1971), Academic Press: Academic Press New York), 313-354 · Zbl 0228.73002
[38] Rice, J. R., Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455 (1971) · Zbl 0235.73002
[39] Rice, J. R., The localization of plastic deformation, (Koiter, W. T., 14th IUTAM Congress (1976)), 207-220, Delft, Netherlands · Zbl 0368.73036
[40] Rudnicki, J. W.; Rice, J. R., Conditions for the localization of deformation in pressure sensitive dilatant materials, J. Mech. Phys. Solids, 23, 371-394 (1975)
[41] Shawki, T. G.; Clifton, R. J., Shear band formation in thermal viscoplastic materials, Mech. Mater., 8, 1, 13-43 (1989)
[42] Sikorski, R., Advanced Calculus (1969), Polish Scientific Publishers: Polish Scientific Publishers Warsaw, Poland · Zbl 0182.37901
[43] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations, Comp. Meth. Appl. Mech. Engnr, 49, 221-245 (1985) · Zbl 0566.73035
[44] Taylor, G. I.; Quinney, H., The latent energy remaining in a metal after cold working, (Proc. Roy. Soc., A-143 (1934)), 307-326
[45] Toupin, R. A., Elastic materials with couple stresses, Arch. Rat. Mech. Anal., 11, 385-414 (1962) · Zbl 0112.16805
[46] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, (Flugge, S., Handbuch Der Physik, Vol. III/3 (1965), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0779.73004
[47] Truesdell, C. A.; Toupin, R. A., The classical field theories, (Flugge, S., Handbuch Der Physik, Volume III/1 (1960), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0102.40701
[48] Wu, F. H.; Freund, L. B., Deformation trapping due to thermoplastic instability in one-dimensional wave propagation, J. Mech. Phys. Solids, 32, 119-132 (1984)
[49] Zbib, H.; Aifantis, E. C., On the gradient dependent theory of plasticity and shear banding, Acta Mech., 92, 209-225 (1992) · Zbl 0751.73022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.