×

Effect of inner gas pressure on the elastoplastic behavior of porous materials: A second-order moment micromechanics model. (English) Zbl 1165.74018

Summary: A new micromechanics model based on the second-order moment of stress is established to investigate the effect of gas pressure on the nonlinear macroscopic constitutive relationship of porous materials. The analytical method agrees well with numerical simulation based on the finite element method. Through a systematic study, we find that the gas pressure has a prominent effect on the nonlinear deformation behavior of porous materials. The gas pressure can cause tension-compression asymmetry on the uniaxial stress-strain curve and the nominal Poisson’s ratio. The pore pressure significantly reduces the initial yield strength and failure strength of porous metals, especially when the relative density of the material is small. The gas phase also strongly compromises the composite strength when the temperature is increased. The model may be useful for the evaluation of mechanical integrity of porous materials under various working conditions and working temperatures.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74M25 Micromechanics of solids
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Aly, M. S.: Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures, Experimental results materials letters 61, 3138-3141 (2007)
[2] Ashby, M. F.; Evans, A.; Fleck, N. A.; Gibson, L. J.; Hutchinson, J. W.; Wadley, H. N. G.: Metal foams: A design guide, (2000)
[3] Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams, Progress in materials science 46, 559-632 (2001)
[4] Barai, P.; Weng, G. J.: The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids, International journal of plasticity 24, No. 8, 1380-1410 (2008) · Zbl 1388.74079
[5] Bastawros, A. -F.; Bart-Smith, H.; Evans, A. G.: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, Journal of the mechanics and physics of solids 48, No. 2, 301-322 (2000) · Zbl 0959.74502 · doi:10.1016/S0022-5096(99)00035-6
[6] Chen, X.; Cao, G.; Han, A.; Punyamurtula, V. K.; Liu, L.; Culligan, P. J.; Kim, T.; Qiao, Y.: Nanoscale fluid transport: size and rate effects, Nano letters 8, 2988-2992 (2008)
[7] Chen, T.; Dvorak, G. J.; Benveniste, Y.: Mori – tanaka estimates of the overall elastic moduli of certain composite materials, ASME journal applied mechanics 59, No. 3, 539-546 (1992) · Zbl 0766.73039 · doi:10.1115/1.2893757
[8] Chen, X.; Surani, F. B.; Kong, X.; Punyamurtula, V. K.; Qiao, Y.: Energy absorption performance of a steel tube enhanced by a nanoporous material functionalized liquid, Applied physics letters 89, 241918 (2006)
[9] Chen, X.; Xiang, Y.; Vlassak, J. J.: A novel technique to measure mechanical properties of porous materials by nanoindentation, Journal of materials research 21, 715-724 (2006)
[10] Chino, Y.; Mabuchi, M.; Nakanishi, H.; Iwasaki, H.; Yamamoto, A.; Tsubakino, H.: Effect of metal powder size on the gas expansion behavior of 7075 al alloy in a semisolid state, Materials science and engineering A 382, No. 1 – 2, 35-40 (2004)
[11] Christensen, R. M.; Lo, K. H.: Solutions for effective shear properties in three phase sphere and cylinder models, Journal of the mechanics and physics of solids 27, 315-330 (1979) · Zbl 0419.73007 · doi:10.1016/0022-5096(79)90032-2
[12] Cleja-Tigoiu, S.; Cazacu, O.; Tigoiu, V.: Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material, International journal of plasticity 24, No. 5, 775-803 (2008) · Zbl 1144.74341 · doi:10.1016/j.ijplas.2007.07.006
[13] Gallo, A. A.; Munamarty, R.: Popcorning: a failure mechanism in plastic-encapsulated microcircuits, IEEE transactions on reliability 44, No. 3, 362-367 (1995)
[14] Guo, T. F.; Cheng, L.: Modeling vapor pressure effects on void rupure and crack growth resistance, Acta materialia 50, 3487-3500 (2002)
[15] Guo, T. F.; Cheng, L.: Vapor pressure and void size effects on failure of a constrained ductile film, Journal of the mechanics and physics of solids 51, No. 6, 993-1014 (2003) · Zbl 1032.74650 · doi:10.1016/S0022-5096(03)00007-3
[16] Gurson, A. L.: Continuum theory of ductile rupture by void nucleation and growth-I yield criteria and flow rules for porous ductile media, Journal of engineering materials and technology 99, 2-15 (1977)
[17] Gurson, A. L.: Porous rigid-plastic materials containing rigid-inclusions-yield function, plastic potential, and void nucleation, Proceedings of the international conference on fracture (1977)
[18] Hammi, Y.; Horstemeyer, M. F.: A physically motivated anisotropic tensorial representation of damage with separate functions for void nucleation, growth, and coalescence, International journal of plasticity 23, No. 10 – 11, 1641-1678 (2007) · Zbl 1155.74315 · doi:10.1016/j.ijplas.2007.03.010
[19] Hashin, Z.; Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the mechanics and physics of solids 11, 127-140 (1963) · Zbl 0108.36902 · doi:10.1016/0022-5096(63)90060-7
[20] Hashin, Z.: Analysis of composites: a survey, ASME journal of applied mechanics 50, 481-505 (1983) · Zbl 0542.73092 · doi:10.1115/1.3167081
[21] Hill, R.: A self-consistent mechanics of composite materials, Journal of the mechanics and physics of solids 13, No. 213 – 222 (1965)
[22] Hsu, C. Y.; Lee, B. J.; Mear, M. E.: Constitutive models for power-law viscous solids containing spherical voids, International journal of plasticity 25, No. 1, 134-160 (2009) · Zbl 1277.74008
[23] Hu, G.: Composite plasticity based on matrix average second order stress moment, International journal of solids and structures 34, No. 8, 1007-1015 (1997) · Zbl 0947.74512 · doi:10.1016/S0020-7683(96)00044-3
[24] Hu, G. K.: A method of plasticity for general aligned spheroidal void or fiber reinforced composites, International journal of plasticity 12, 439-449 (1996) · Zbl 0884.73035 · doi:10.1016/S0749-6419(96)00015-0
[25] Kitazono, K.; Sato, E.; Kuribayashi, K.: Application of mean-field approximation to elastic – plastic behavior for closed-cell metal foams, Acta materialia 51, 4823-4836 (2003)
[26] Kreher, W.; Pompe, W.: Internal stress in heterogeneous solids, Internal stress in heterogeneous solids 9 (1989) · Zbl 0760.73001
[27] Le Quang, H.; He, Q. C.: Effective pressure-sensitive elastoplastic behavior of particle-reinforced composites and porous media under isotropic loading, International journal of plasticity 24, No. 2, 343-370 (2008) · Zbl 1130.74039 · doi:10.1016/j.ijplas.2007.08.006
[28] Li, L. X.; Wang, T. J.: A unified approach to predict overall properties of composite materials, Materials characterization 54, 49-62 (2005)
[29] Liu, L.; Qiao, Y.; Chen, X.: Pressure-driven water infiltration into carbon nanotube: the effect of applied charges, Applied physics letters 92, 101927 (2008)
[30] Monchiet, V.; Cazacu, O.; Charkaluk, E.; Kondo, D.: Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, International journal of plasticity 24, No. 7, 1158-1189 (2008) · Zbl 1421.74023
[31] Nemat-Nasser, S.; Hori, M.: Micromechanics: overall properties of heterogeneous materials, (1993) · Zbl 0924.73006
[32] Öchsner, A., Mishuris, G., Grácio, J., 2004. Macroscopic behaviour of porous metals with internal gas pressure under multiaxial loading. In: Third International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies, Ariel, Israel.
[33] Pardoen, T.; Hutchinson, J. W.: An extended model for void growth and coalescence, Journal of the mechanics and physics of solids 48, 2467-2512 (2000) · Zbl 1005.74059 · doi:10.1016/S0022-5096(00)00019-3
[34] Castañeda, P. Ponte: The effective mechanical properties of nonlinear isotropic composite, Journal of the mechanics and physics of solids 39, 45-71 (1991) · Zbl 0734.73052 · doi:10.1016/0022-5096(91)90030-R
[35] Castañeda, P. Ponte: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, Journal of the mechanics and physics of solids 44, No. 6, 827-862 (1996) · Zbl 1054.74708 · doi:10.1016/0022-5096(96)00015-4
[36] Castañeda, P. Ponte; Suquet, P.: Nonlinear composites, Advances in applied mechanics 34, 171-302 (1997) · Zbl 0889.73049
[37] Qiu, Y. P.; Weng, G. J.: A theory of plasticity for porous materials and particle-reinforced composites, ASME journal of applied mechanics 59, 261-268 (1992) · Zbl 0825.73037 · doi:10.1115/1.2899515
[38] Qiu, Y. P.; Weng, G. J.: Plastic potential and yield function of porous materials with aligned and randomly oriented spheroidal voids, International journal of plasticity 9, 271-290 (1993) · Zbl 0783.73023 · doi:10.1016/0749-6419(93)90038-R
[39] Qiu, Y. P.; Weng, G. J.: An energy approach to the plasticity of a two-phase composite containing aligned inclusions, ASME journal of applied mechanics 62, No. 4, 1039-1046 (1995) · Zbl 0865.73029 · doi:10.1115/1.2896040
[40] Sanchez, P. J.; Huespe, A. E.; Oliver, J.: On some topics for the numerical simulation of ductile fracture, International journal of plasticity 24, No. 6, 1008-1038 (2008) · Zbl 1152.74041 · doi:10.1016/j.ijplas.2007.08.004
[41] Socrate, S.; Boyce, M. C.: Micromechanics of toughened polycarbonate, Journal of the mechanics and physics of solids 48, 233-273 (2000) · Zbl 1007.74033 · doi:10.1016/S0022-5096(99)00037-X
[42] Suquet, P.: Overall potentials and extremal surfaces of power law or ideally plastic composites, Journal of the mechanics and physics of solids 41, 981-1002 (1993) · Zbl 0773.73063 · doi:10.1016/0022-5096(93)90051-G
[43] Suquet, P.: Overall properties of nonlinear composites: a modified secant moduli theory and its link with ponte castaneda’s nonlinear variational procedure, Comptes rendus de l’academie des sciences. Serie III, No. 320, 563-571 (1995) · Zbl 0830.73046
[44] Tandon, G. P.; Weng, G. J.: A theory of particle reinforced plasticity, ASME journal of applied mechanics 55, 126-135 (1988)
[45] Tane, M.; Ichitsubo, T.; Hirao, M.; Nakajima, H.: Extended mean-field method for predicting yield behaviors of porous materials, Mechanics of materials 39, 53-63 (2007)
[46] Tvergaard, V.: Influence of voids on shear bands instabilities under plane strain conditions, International journal of fracture 17, 389-470 (1981)
[47] Tvergaard, V.: On localization in ductile materials containing spherical voids, International journal of fracture 18, 237-252 (1982)
[48] Tvergaard, V.: Material failure by void growth to coalescence, Advances in applied mechanics 27, 83-151 (1989) · Zbl 0728.73058 · doi:10.1016/S0065-2156(08)70195-9
[49] Yamamura, S.; Shiota, H.; Murakami, K.; Nakajima, H.: Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen, Materials science and engineering A 318, No. 1 – 2, 137-143 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.