×

A size-dependent shear deformable computational framework for transient response of GNP-reinforced metal foam cylindrical shells subjected to localized impulsive loads. (English) Zbl 1505.74146


MSC:

74K25 Shells
Full Text: DOI

References:

[1] Judy, J. W., Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Mater. Struct., 10, 1115-1134 (2001)
[2] Fischer, A.; Forsberg, F.; Lapisa, M., Integrating MEMS and ICs, Microsyst. Nanoeng., 1, 15005 (2015)
[3] Farokhi, H.; Ghayesh, M. H., Nonlinear mechanical behaviour of microshells, Int. J. Eng. Sci., 127, 127-144 (2018) · Zbl 1423.74572
[4] Gholami, R.; Darvizeh, A.; Ansaria, R.; Sadeghi, F., Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin’s strain gradient elasticity theory, Eur. J. Mech. A Solids, 58, 76-88 (2016) · Zbl 1406.74473
[5] Jouneghani, F. Z.; Dashtaki, P. M.; Dimitri, R.; Bacciocchi, M.; Tornabene, F., First-order shear deformation theory for orthotropic doubly-curved shells based on a modified couple stress elasticity, Aerosp. Sci. Technol., 73, 129-147 (2018)
[6] Torabi, J.; Niiranen, J.; Ansari, R., Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory, Eur. J. Mech. A Solids, 87, Article 104221 pp. (2021) · Zbl 1484.74073
[7] Wang, A.; Chen, H.; Zhang, W., Nonlinear transient response of doubly curved shallow shells reinforced with graphene nanoplatelets subjected to blast loads considering thermal effects, Compos. Struct., 225, Article 111063 pp. (2019)
[8] Shojaeefard, M. H.; Googarchin, H. S.; Ghadiri, M.; Mahinzare, M., Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT, Appl. Math. Modell., 50, 633-655 (2017) · Zbl 1476.74034
[9] Ansari, R.; Torabi, J., Numerical study on the free vibration of carbon nanocones resting on elastic foundation using nonlocal shell model, Appl. Phys. A, 122, 1073 (2016)
[10] Chen, S.-X.; Sahmani, S.; Safaei, B., Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling, Eng. Comput., 37, 1657-1678 (2021)
[11] Liew, K. M.; Ng, T. Y.; Zhao, X.; Reddy, J. N., Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells, Comput. Methods Appl. Mech. Eng., 191, 37-38, 4141-4157 (2002) · Zbl 1083.74609
[12] Tornabene, F.; Viola, E., Free vibration analysis of functionally graded panels and shells of revolution, Meccanica, 44, 255-281 (2009) · Zbl 1254.74056
[13] Shen, H.-S.; Li, C.; Reddy, J. N., Large amplitude vibration of FG-CNTRC laminated cylindrical shells with negative Poisson’s ratio, Comput. Meth. Appl. Mech. Eng., 360, Article 112727 pp. (2020) · Zbl 1441.74091
[14] Gao, K.; Gao, W.; Wu, D.; Song, C., Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler-Pasternak elastic foundation subjected to a linearly increasing load, J. Sound Vib., 415, 147-168 (2018)
[15] Beni, Y. T.; Mehralian, F.; Razavi, H., Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory, Compos. Struct., 120, 65-78 (2015)
[16] Yuan, Y.; Zhao, K.; Han, Y.; Sahmani, S.; Safaei, B., Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model, Thin Walled Struct., 154, Article 106857 pp. (2020)
[17] Ansari, R.; Gholami, R.; Norouzzadeh, A., Size-dependent thermo-mechanical vibration and instability of conveying fluid functionally graded nanoshells based on Mindlin’s strain gradient theory, Thin Walled Struct., 105, 172-184 (2016)
[18] Yang, Z.; Safaei, B.; Sahmani, S.; Zhang, Y., A couple-stress-based moving Kriging meshfree shell model for axial postbuckling analysis of random checkerboard composite cylindrical microshells, Thin Walled Struct., 170, Article 108631 pp. (2022)
[19] Liu, H.; Lv, Z.; Tang, H., Nonlinear vibration and instability of functionally graded nanopipes with initial imperfection conveying fluid, Appl. Math. Modell., 76, 133-150 (2019) · Zbl 1481.74278
[20] Sahmani, S.; Ansari, R.; Gholami, R.; Darvizeh, A., Size-dependent dynamic stability response of higher-order shear deformable cylindrical microshells made of functionally graded materials, Compos. Part B Eng., 51, 44-53 (2013)
[21] Ilkhani, M. R.; Nazemnezhad, R., Molecular dynamics simulation and size dependent cylindrical shell models for vibrations of spinning axially loaded carbon nanotubes, Eur. J. Mech. A Solids, 77, Article 103804 pp. (2019) · Zbl 1472.74085
[22] Qatu, M. S., Accurate equations for laminated composite deep thick shells, Int. J. Solids Struct., 36, 2917-2941 (1999) · Zbl 0941.74032
[23] Chandrashekhara, K.; Nanjunda Rao, K. S., Approximate elasticity solution for a long and thick laminated circular cylindrical shell of revolution, Int. J. Solids Struct., 34, 2, 1327-1341 (1997) · Zbl 0944.74581
[24] Khalili, S. M.R.; Davar, A.; Fard, K. M., Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory, Int. J. Mech. Sci., 56, 1-25 (2012)
[25] Wang, Y.; Xie, K.; Fu, T.; Zhang, W., A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory, Eur. Phys. J. Plus, 135, 1, 1-19 (2020)
[26] Wang, Y.; Fu, T.; Zhang, W., An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: applications to dynamic stability analysis, Thin Walled Struct., 160, Article 107400 pp. (2021)
[27] Wang, Y.; Zhou, A.; Xie, K.; Fu, T.; Shi, C., Nonlinear static behaviors of functionally graded polymer-based circular microarches reinforced by graphene oxide nanofillers, Results Phys., 16, Article 102894 pp. (2020)
[28] Zhang, L. W.; Song, Z. G.; Qiao, P.; Liew, K. M., Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads, Comput. Meth. Appl. Mech. Eng., 313, 889-903 (2017) · Zbl 1439.74235
[29] Sofiyev, A. H., Dynamic response of an FGM cylindrical shell under moving loads, Compos. Struct., 93, 1, 58-66 (2010)
[30] Van Thanh, N.; Dinh Quang, V.; Dinh Khoa, N.; K, Seung-Eock; Dinh Duc, N., Nonlinear dynamic response and vibration of FG CNTRC shear deformable circular cylindrical shell with temperature-dependent material properties and surrounded on elastic foundations, J. Sandw. Struct. Mater., 21, 7, 2456-2483 (2019)
[31] Palacios, J. A.; Ganesan, R., Dynamic response of single-walled carbon nanotubes based on various shell theories, J. Reinf. Plast. Compos., 38, 9, 413-425 (2019)
[32] Ebrahimi, F.; Hashemabadi, D.; Habibi, M.; Safarpour, H., Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell, Microsyst. Technol., 26, 461-473 (2020)
[33] Bielor, E.; Freiman, M.; Krutzik, N. J., Accuracy of dynamic calculations using shell models under local impulse loading, Nucl. Eng. Des., 117, 3, 299-308 (1989)
[34] Krasovsky, V.; Marchenko, V.; Schmidt, R., Deformation and buckling of axially compressed cylindrical shells with local loads in numerical simulation and experiments, Thin Walled Struct., 49, 5, 576-580 (2011)
[35] Giunta, G.; Biscani, F.; Belouettar, S.; Carrera, E., Hierarchical modelling of doubly curved laminated composite shells under distributed and localised loadings, Compos. Part B Eng., 42, 4, 682-691 (2011)
[36] Jiang, H. J.; Wang, X. G.; Liang, L. H.; Dai, H. L., Three-dimensional steady thermodynamic analysis for a double-layer plate with a local heat source and harmonic load, Appl. Therm. Eng., 106, 161-173 (2016)
[37] Kitipornchai, S.; Chen, D.; Yang, J., Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets, Mater. Des., 116, 656-665 (2017)
[38] Chen, D.; Yang, J.; Kitipornchai, S., Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams, Compos. Sci. Technol., 142, 235-245 (2017)
[39] Yang, J.; Chen, D.; Kitipornchai, S., Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method, Compos. Struct., 193, 281-294 (2018)
[40] Dong, Y. H.; Li, Y. H.; Chen, D.; Yang, J., Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion, Compos. Part B Eng., 145, 1-13 (2018)
[41] Tjong, S. C., Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Mater. Sci. Eng. R Rep., 74, 281-350 (2013)
[42] Rashad, M.; Pan, F.; Tang, A.; Asif, M., Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci. Mater. Int., 24, 101-108 (2014)
[43] Bartolucci, S. F.; Paras, J.; Rafiee, M. A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N., Graphene-aluminum nanocomposites, Mater. Sci. Eng. A, 528, 7933-7937 (2011)
[44] Wang, Y. Q.; Ye, C.; Zu, J. W., Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets, Aerosp. Sci. Technol., 85, 359-370 (2019)
[45] Liu, Y. F.; Wang, Y. Q., Free vibration and buckling of polymeric shells reinforced with 3D graphene foams, Results Phys., 14, Article 102510 pp. (2019)
[46] Liu, Y. F.; Wang, Y. Q., Size-dependent free vibration and buckling of three-dimensional graphene foam microshells based on modified couple stress theory, Materials, 12, 5, 729 (2019)
[47] Nguyen, N. V.; Lee, J.; Nguyen-Xuan, H., Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers, Compos. Part B Eng., 172, 769-784 (2019)
[48] Gao, W.; Qin, Z.; Chu, F., Wave propagation in functionally graded porous plates reinforced with graphene platelets, Aerosp. Sci. Technol., 102, Article 105860 pp. (2020)
[49] Ashby, M. F.; Evans, T.; Fleck, N. A.; Hutchinson, J.; Wadley, H.; Gibson, L., Metal foams: a design guide (2000), Butterworth-Heinemann: Butterworth-Heinemann Boston, USA
[50] Zhou, X.; Wang, Y.; Zhang, W., Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow, Acta Astronaut., 183, 89-100 (2021)
[51] Gibson, L. J.; Ashby, M. F., Cellular Solids: Structure and Properties (1997), Cambridge University Press: Cambridge University Press Cambridge, UK
[52] SimoneaL, A. E.; Gibsonb, J., Effects of solid distribution on the stiffness and strength of metallic foams, Acta Mater., 46, 2139-2150 (1998)
[53] Rafiee, M. A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z. Z.; Koratkar, N., Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3, 3884-3890 (2009)
[54] De Villoria, R. G.; Miravete, A., Mechanical model to evaluate the effect of the dispersion in nanocomposites, Acta Mater., 55, 3025-3031 (2007)
[55] Wang, Y.; Xie, K.; Fu, T.; Shi, C., Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses, Compos. Struct., 209, 928-939 (2019)
[56] Ghayesh, M. H.; Farajpour, A., A review on the mechanics of functionally graded nanoscale and microscale structures, Int. J. Eng. Sci., 137, 8-36 (2019) · Zbl 1425.74358
[57] Ma, H.; Gao, X.-L.; Reddy, J., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, 56, 3379-3391 (2008) · Zbl 1171.74367
[58] Li, Y.; Pan, E. S., Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, Int. J. Eng. Sci., 97, 40-59 (2015) · Zbl 1423.74401
[59] Bhimaraddi, A., A higher order theory for free vibration analysis of circular cylindrical shells, Int. J. Solids Struct., 20, 7, 623-630 (1984) · Zbl 0543.73090
[60] Wang, Y.; Fu, T.; Zhang, W., An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: applications to dynamic stability analysis, Thin Walled Struct., 160, Article 107400 pp. (2021)
[61] Soldatos, K. P., A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech., 94, 3-4, 195-220 (1992) · Zbl 0850.73130
[62] Wang, Y.; Wu, D., Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory, Aerosp. Sci. Technol., 66, 83-91 (2017)
[63] Arefi, M., Size-dependent bending behavior of three-layered doubly curved shells: modified couple stress formulation, J. Sandw. Struct. Mater., 22, 7, 2210-2249 (2020)
[64] Farokhi, H.; Ghayesh, M. H., Modified couple stress theory in orthogonal curvilinear coordinates, Acta Mater., 230, 851-869 (2019) · Zbl 1428.74008
[65] Wang, A.; Chen, H.; Zhang, W., Nonlinear transient response of doubly curved shallow shells reinforced with graphene nanoplatelets subjected to blast loads considering thermal effects, Compos. Struct., 225, Article 111063 pp. (2019)
[66] Kant, T.; Arora, C. P.; Varaiya, J. H., Finite element transient analysis of composite and sandwich plates based on a refined theory and a mode superposition method, Compos. Struct., 22, 2, 109-120 (1992)
[67] Yang, J.; Shen, H.-S., Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments, J. Sound Vib., 255, 3, 579-602 (2002)
[68] Liu, D.; Kitipornchai, S.; Chen, W.; Yang, J., Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell, Compos. Struct., 189, 560-569 (2018)
[69] Soldatos, K. P.; Hadjigeorgiou, V. P., Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels, J. Sound Vib., 137, 3, 369-384 (1990) · Zbl 1235.74121
[70] Zeighampour, H.; Beni, Y. T., A shear deformable cylindrical shell model based on couple stress theory, Archiv. Appl. Mech., 85, 539-553 (2015) · Zbl 1341.74120
[71] Arshid, E.; Amir, S.; Loghman, A., Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates, Aerosp. Sci. Technol., 111, Article 106561 pp. (2021)
[72] Arefi, M.; Bidgoli, E. M.-R.; Rabczuk, T., Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT, Thin Walled Struct., Volume 142, 444-459 (2019), SeptemberPages
[73] Wang, Y.; Xie, K.; Shi, C.; Fu, T., Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments, Mater. Res. Express, 6, 8, Article 085615 pp. (2019)
[74] Reddy, J. N.; Chin, C. D., Thermomechanical analysis of functionally graded cylinders and plates, J. Therm. Stress., 21, 593-629 (1998)
[75] Li, Q.; Wu, D.; Chen, X.; Liu, L.; Yu, Y.; Gao, W., Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation, Int. J. Mech. Sci., 148, 596-610 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.