×

3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. (English) Zbl 1191.80020

Summary: A 3D numerical simulation methodology for the flow and heat transfer at the pore scale level of high porosity open cell metal foam is presented. The pore scale topology is directly represented with a 3D numerical model of the geometry, which is discretised using a tetrahedral volume mesh for both its void and solid phases. The conjugate flow and temperature fields are obtained by solution of the Navier-Stokes and energy equations for two different foam pore densities under various flow and temperature conditions. Model validation is performed against macroscopic parameters such as pressure drop and heat transfer coefficient; the results are found in reasonable agreement with the experimental measurements.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

Surface Evolver
Full Text: DOI

References:

[1] Boomsma, K.; Poulikakos, D.: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, Int. J. Heat fluid flow 44, 825-834 (2001) · Zbl 0968.74571
[2] Dukhan, N.: Correlations for the pressure drop for flow through metal foam, Exp. fluids 41, 665-672 (2006)
[3] Ozmat, B.; Leyda, B.; Benson, B.: Thermal applications of open-cell metal foams, Mater. manufact. Process., 839-862 (2004)
[4] Klein, J. F.; Arcas, N.; Gilhrist, G.; Shields, W.; Yurman, R.; Whiteside, J.: Thermal management of airborne early warning and electronic warfare systems using foam metal fins, Technol. rev. J. spring/summer, 103-127 (2005)
[5] Arisetty, S.; Prasad, A. K.; Advani, S. G.: Metal foams as flow field and gas diffusion layer in direct methanol fuel cells, J. power sources 165, 49-57 (2007)
[6] Kumar, A.; Reddy, R. G.: Polymer electrolyte membrane fuel cell with metal foam in the gas flow-field of bipolar/end plates, J. new mater. Electrochem. syst. 6, 231-236 (2003)
[7] Azzi, W.; Roberts, W. L.; Rabiei, A.: A study on pressure drop and heat transfer in open cell metal foams for jet engine applications, Mater. des. 28, 569-574 (2007)
[8] Phanikumar, M. S.; Mahajan, R. L.: Non-Darcy natural convection in high porosity metal foams, Int. J. Heat mass transfer 45, 3781-3793 (2002) · Zbl 1006.76552 · doi:10.1016/S0017-9310(02)00089-3
[9] Bhattacharya, A.; Calmidi, V. V.; Mahajan, R. L.: Thermophysical properties of high porosity metal foams, Int. J. Heat mass transfer 45, 1017-1031 (2002) · Zbl 1121.74443 · doi:10.1016/S0017-9310(01)00220-4
[10] A.R. Alvarez-Hernandez, Combined Flow and Heat Transfer Characterization of Open Cell Aluminum Foams, 2005, M.Sc. Thesis University of Puerto Rico.
[11] Boomsma, K.; Poulikakos, D.; Zwick, F.: Metal foams as compact high performance heat exchangers, Mech. mater. 35, 1161-1176 (2003)
[12] Leong, K. C.; Jin, L. W.: Effect of oscillatory frequency on heat transfer in metal foam heat sinks of various pore densities, Int. J. Heat mass transfer 4, 671-681 (2006)
[13] Tzou, D. Y.: Macro- to micro-scale heat transfer: the lagging behavior, (1997)
[14] Vafai, K.; Tien, C. L.: Boundary and inertial effects on flow and heat transfer in porous media, Int. J. Heat mass transfer 24, 195-203 (1984) · Zbl 0464.76073 · doi:10.1016/0017-9310(81)90027-2
[15] Vafai, K.: Convective flow and heat transfer in variable porosity media, J. fluid mech. 147, 233-259 (1984) · Zbl 0578.76099 · doi:10.1017/S002211208400207X
[16] Chiem, K. S.; Zhao, Y.: Numerical study of steady/unsteady flow and heat transfer in porous media using a characteristics-based matrix-free implicit FV method on unstructured grids, Int. J. Heat fluid flow 25, No. 6, 1015-1033 (2004)
[17] Kaviany, M.: Principles of heat transfer in porous media, (1995) · Zbl 0889.76002
[18] Du Plessis, P.; Montillet, A.; Comiti, J.; Legrand, J.: Pressure-drop prediction for flow-through high-porosity metallic foams, Chem. eng. Sci. 49, 3545-3553 (1994)
[19] Fourie, J. G.; Du Plessis, J. P.: Pressure drop modelling in cellular metallic foams, Chem. eng. Sci. 57, No. 14, 2781-2789 (2002)
[20] Lu, T. J.; Stone, H. A.; Ashby, M. F.: Heat transfer in open-cell metal foams, Acta mater. 46, No. 10, 3619-3635 (1998)
[21] Boomsma, K.; Poulikakos, D.; Ventikos, Y.: Simulations of flow through open cell metal foams using an idealized periodic cell structure, Int. J. Heat fluid flow 24, 825-834 (2003)
[22] A. Kopanidis, A. Theodorakakos, E. Gavaises, D. Bouris, Numerical simulation of fluid flow and heat transfer with direct modeling of microscale geometry, in: G.G.M. Stoffels, T.H. van der Meer, A.A. van Steenhoven (Eds.), Proceedings of the Fifth European Thermal-Sciences Conference, Eindhoven, Netherlands, HEX_16, 2008. · Zbl 1191.80020
[23] Launder, B. E.; Spalding, D. B.: The numerical computation of turbulent flows, Comput. methods appl. Mech. eng. 3, 537 (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[24] Rhie, M. C.; Chow, L. W.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, Aiaa (1982) · Zbl 0528.76044
[25] Patankar, S. V.; Spalding, B. D.: A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat mass transfer 15, 1787-1806 (1972) · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[26] Nikolopoulos, N.; Theodorakakos, A.; Bergeles, G.: A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate, Int. J. Heat mass transfer 50, No. 1 – 2, 303-319 (2007) · Zbl 1116.80012 · doi:10.1016/j.ijheatmasstransfer.2006.06.012
[27] Nikolopoulos, N.; Theodorakakos, A.; Bergeles, G.: Three-dimensional numerical investigation of a droplet impinging normally onto a wall film, J. comput. Phys. 225, No. 1, 322-341 (2007) · Zbl 1119.76013 · doi:10.1016/j.jcp.2006.12.002
[28] Shen, L.; Chen, Z.: Critical review of the impact of tortuosity on diffusion, Chem. eng. Sci. 62, 3748-3755 (2007)
[29] Thomson, W.: On the division of space with minimum partitional area, Philos. mag. 24, 503 (1887) · JFM 19.0520.02
[30] Weaire, D.; Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces, Philos. mag. Lett. 69, 107-110 (1994) · Zbl 1002.52514
[31] Brakke, K.: The surface evolver, Exp. math. 1, 141-165 (1992) · Zbl 0769.49033
[32] Boomsma, K.; Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams, J. fluids eng. – trans. ASME 124, 263-272 (2002)
[33] ERG Co., Duocel Metal Foams, (<http://www.ergaerospace.com>).
[34] Haack, D. P.; Butcher, K. R.; Kim, T.; Lu, T. J.: Novel lightweight metal foam heat exchangers, Am. soc. Mech. eng., process ind. Div. (Publication) PID 6, 141-147 (2001)
[35] Sunden, B.: Conjugated heat transfer from circular cylinders in low Reynolds number flow, Int. J. Heat mass transfer 23, 1787-1806 (1980) · Zbl 0439.76076 · doi:10.1016/0017-9310(80)90210-0
[36] Bonnet, J. P.; Topin, F.; Tadrist, L.: Flow laws in metal foams: compressibility and pore size effects, Transp. porous med. 73, 233-254 (2008)
[37] Kays, W. M.; London, A. L.: Compact heat exchangers, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.