×

Numerical homogenization of hybrid metal foams using the finite cell method. (English) Zbl 1443.74251

Summary: We present a numerical homogenization approach for hybrid metal foams, i.e. foams that are electrocoated to improve their mechanical properties. Based on the finite cell method, a spatial discretization of a \(\mu\)CT-scan of the microstructure of the hybrid metal foam under investigation is derived and the window method is applied to compute effective material properties. We demonstrate that this method offers the possibility to efficiently compute and study the influence of the coating thickness of hybrid metal foams.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Gibson, L. J.; Ashby, M. F., (Cellular Solids. Structure and Properties. Cellular Solids. Structure and Properties, Cambridge Solid State Science Series (1997), Cambridge University Press)
[2] Gibson, L. J.; Ashby, M. F.; Harley, B. A., Cellular Materials in Nature and Medicine (2010), Cambridge University Press
[3] Ashby, M. F.; Evans, A. G.; Fleck, N. A.; Gibson, L. J.; Hutchinson, J. W.; Wadley, H. N.G., Metal Foams: A Design Guide (2000), Butterworth-Heinemann
[4] Koerner, C., Integral Foam Molding of Light Metals - Technology, Foam Physics and Foam Simulaton (2008), Springer
[5] (Altenbach, H.; Öchsner, A., Cellular and Porous Materials in Structures and Processes. Cellular and Porous Materials in Structures and Processes, CISM Courses and Lectures, vol. 521 (2010), Springer) · Zbl 1295.74003
[6] (Altenbach, H.; Öchsner, A., Plasticity of Pressure-Sensitive Materials, Engineering Materials (2014), Springer) · Zbl 1277.74004
[7] Bouwhuis, B. A.; McCrea, J. L.; Palumbo, G.; Hibbard, G. D., Mechanical properties of hybrid nanocrystalline metal foams, Acta Mater., 57, 4046-4053 (2009)
[8] Jung, A.; Natter, H.; Hempelmann, R.; Lach, E., Nano nickel strengthend open cell metal foams under quasistatic and dynamic loading, (DYMAT 2009 — 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading. DYMAT 2009 — 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, Brussels, Belgium (2009)), 717-723
[9] Lausic, A. T.; Bouwhuis, B. W.; McCrea, J. L.; Hibbard, G. D., Mechanical anisotropy in electrodeposited nanocrystalline metal/metal composite foams, Mater. Sci. Eng. A, 552, 157-163 (2012)
[10] Jung, A.; Lach, E.; Diebels, S., New hybrid foam materials for impact protection, Int. J. Impact Eng., 64, 30-38 (2014)
[11] Sun, Y.; Burgueño, R.; Vanderklok, A. J.; Tekalur, S. A.; Wang, W.; Lee, I., Compressive behaviour of aluminum/copper hybrid foams under high strain rate loading, Mater. Sci. Eng. A, 592, 111-120 (2014)
[12] Babuška, I.; Melenk, J., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[13] Sukumar, N.; Chopp, D.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, 6183-6200 (2001) · Zbl 1029.74049
[14] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 64, 131-150 (1999) · Zbl 0955.74066
[15] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Modelling Simul. Mater. Sci. Eng., 17, 043001 (2009)
[16] Legrain, G.; Chevaugeon, N.; Dreau, K., High order x-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation, Comput. Methods Appl. Mech. Engrg., 241-244, 172-189 (2012), URL http://linkinghub.elsevier.com/retrieve/pii/S0045782512001880 · Zbl 1353.74071
[17] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 3, 253-304 (2010) · Zbl 1202.74169
[18] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 4081-4193 (2001) · Zbl 0997.74069
[19] Lian, W.; Legrain, G.; Cartraud, P., Image-based computational homogenization and localization: comparison between x-fem/levelset and voxel-based approaches, Comput. Mech., 51, 3, 279-293 (2013)
[20] Kästner, M.; Haasemann, G.; Ulbricht, V., Multiscale xfem-modelling and simulation of the inelastic material behaviour of textile-reinforced polymers, Internat. J. Numer. Methods Engrg., 86, 4-5, 477-498 (2011) · Zbl 1216.74024
[21] Hiriyur, B.; Waisman, H.; Deodatis, G., Uncertainty quantification in homogenization of heterogeneous microstructures modeled by xfem, Internat. J. Numer. Methods Engrg., 88, 3, 257-278 (2011) · Zbl 1242.74125
[22] Parvizian, J.; Düster, A.; Rank, E., Finite cell method — \(h\)- and \(p\)-extension for embedded domain problems in solid mechanics, Comput. Mech., 41, 121-133 (2007) · Zbl 1162.74506
[23] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 3768-3782 (2008) · Zbl 1194.74517
[24] Rank, E.; Kollmannsberger, S.; Sorger, C.; Düster, A., Shell finite cell method: A high order fictitious domain approach for thin-walled structures, Comput. Methods Appl. Mech. Engrg., 200, 3200-3209 (2011), URL http://www.sciencedirect.com/science/article/pii/S0045782511002234 · Zbl 1230.74232
[25] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Düster, A., Geometric modeling, isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249-252, 104-115 (2012), URL http://www.sciencedirect.com/science/article/pii/S0045782512001855 · Zbl 1348.74340
[26] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the p- and B-spline versions of the finite cell method, Comput. Mech., 50, 445-478 (2012) · Zbl 1398.74401
[27] Schillinger, D.; Düster, A.; Rank, E., The \(h p - d\)-adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Internat. J. Numer. Methods Engrg., 89, 1171-1202 (2012) · Zbl 1242.74161
[28] Sehlhorst, H.-G., Numerical homogenization strategies for cellular materials with applications in structural mechanics (2011), Fachgebiet für Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik, TU Hamburg-Harburg, (Ph.D. thesis)
[29] Düster, A.; Sehlhorst, H.-G.; Rank, E., Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method, Comput. Mech., 50, 413-431 (2012) · Zbl 1386.74117
[30] Szabó, B.; Düster, A.; Rank, E., The \(p\)-version of the finite element method, (Stein, E.; de Borst, R.; Hughes, T. J. R., Encyclopedia of Computational Mechanics, Vol. 1 (2004), John Wiley & Sons), 119-139, Ch. 5
[31] Düster, A.; Bröker, H.; Rank, E., The p-version of the finite element method for three-dimensional curved thin walled structures, Internat. J. Numer. Methods Engrg., 52, 673-703 (2001) · Zbl 1058.74079
[32] Düster, A.; Scholz, D.; Rank, E., \(p q\)-adaptive solid finite elements for three-dimensional plates and shells, Comput. Methods Appl. Mech. Engrg., 197, 243-254 (2007) · Zbl 1169.74598
[33] Abedian, A.; Parvizian, J.; Düster, A.; Khademyzadeh, H.; Rank, E., Performance of different integration schemes in facing discontinuites in the finite cell method, Int. J. Comput. Methods, 10, 3 (2013), 1350002/1-24 · Zbl 1359.65245
[34] Abedian, A.; Parvizian, J.; Düster, A.; Rank, E., The finite cell method for the \(J_2\) flow theory of plasticity, Finite Elem. Anal. Des., 69, 37-47 (2013)
[35] Joulaian, M.; Düster, A., Local enrichment of the finite cell method for problems with material interfaces, Comput. Mech., 52, 741-762 (2013) · Zbl 1311.74123
[36] Yang, Z.; Kollmannsberger, S.; Düster, A.; Ruess, M.; Garcia, E.; Burgkart, R.; Rank, E., Non-standard bone simulation: interactive numerical analysis by computational steering, Comput. Vis. Sci., 14, 207-216 (2012) · Zbl 1522.92006
[37] Müller, B.; Kummer, F.; Oberlack, M.; Wang, Y., Simple multidimensional integration of discontinuous functions with application to level set methods, Internat. J. Numer. Methods Engrg., 92, 637-651 (2012) · Zbl 1352.65084
[38] Müller, B.; Kummer, F.; Oberlack, M., Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Internat. J. Numer. Methods Engrg., 96, 512-528 (2013) · Zbl 1352.65083
[39] Zander, N.; Kollmannsberger, S.; Ruess, M.; Yosibash, Z.; Rank, E., The finite cell method for linear thermoelasticity, Comput. Math. Appl., 64, 11, 3527-3541 (2012), URL http://linkinghub.elsevier.com/retrieve/pii/S0898122112005688 · Zbl 1268.74020
[40] Dauge, M.; Düster, A.; Rank, E., Theoretical and numerical investigation of the finite cell method, J. Sci. Comput., 1-26 (2015)
[41] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Internat. J. Numer. Methods Engrg., 66, 761-795 (2006) · Zbl 1110.74858
[42] Abdelaziz, Y.; Hamouine, A., A survey of the extended finite element, Comput. Struct., 86, 1141-1151 (2008)
[43] Cheng, K.; Fries, T.-P., Higher-order XFEM for curved strong and weak discontinuities, Internat. J. Numer. Methods Engrg., 82, 564-590 (2009) · Zbl 1188.74052
[44] Moumnassi, M.; Belouettar, J.; Béchet, E.; Bordas, S.; Potier-Ferry, Q. D., M., Finite element analysis on implicitly defined domains: An accurate representation based on arbitrary parametric surfaces, Comput. Methods Appl. Mech. Engrg., 200, 5-8 (2011) · Zbl 1225.65111
[45] Mousavi, S. E.; Sukumar, N., Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput. Mech., 47, 535-554 (2011) · Zbl 1221.65078
[46] Yang, Z.; Ruess, M.; Kollmannsberger, S.; Düster, A.; Rank, E., An efficient integration technique for the voxel-based finite cell method, Internat. J. Numer. Methods Engrg., 91, 457-471 (2012)
[47] Huet, C., Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume, J. Mech. Phys. Solids, 42, 12, 1995-2011 (1994) · Zbl 0821.73005
[48] Zhodi, T.; Wriggers, P., (Introduction to Computational Micromechanics. Introduction to Computational Micromechanics, Lecture Notes in Applied and Computational Mechanics, vol. 20 (2005), Springer) · Zbl 1085.74001
[49] Hain, M.; Wriggers, P., Numerical homogenization of hardened cement paste, Comput. Mech., 42, 197-212 (2008) · Zbl 1304.74057
[50] Temizer, I.; Wu, T.; Wriggers, P., On the optimality of the window method in computational homogenization, Int. J. Eng. Sci., 64, 0, 66-73 (2013), URL http://www.sciencedirect.com/science/article/pii/S0020722513000049 · Zbl 1423.74795
[51] MacLeod, A., Acceleration of vector sequences by multi-dimensional \(\Delta^2\) methods, Commun. Appl. Numer. Methods, 1, 3-20 (1986)
[52] Küttler, U.; Wall, W., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 1, 43, 61-72 (2008) · Zbl 1236.74284
[53] Gross, D.; Seelig, T., Mikromechanik und Homogenisierung, (Gross, D., Bruchmechanik (2011), Springer: Springer Berlin Heidelberg), 241-314
[54] Joulaian, M.; Düster, A., The hp-d version of the finite cell method with local enrichment for multiscale problems, (Proceedings in Applied Mathematics and Mechanics, Vol. 13 (2013)), 259-260
[55] Düster, A., Die hp-d methode für Reissner-Mindlin plattenprobleme, (Hauser, M.; Katrunoschkov, P., 9. Forum Bauinformatik, Fortschrittberichte VDI (1997), Bauingenieurwesen, VDI-Verlag: Bauingenieurwesen, VDI-Verlag Reihe 4), 211-218
[56] Zander, N.; Bog, T.; Kollmannsberger, S.; Schillinger, D.; Rank, E., Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes, Comput. Mech., 55, 3, 499-517 (2015) · Zbl 1311.74133
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.