×

Low order nonconforming finite element methods for nuclear reactor model. (English) Zbl 07827635

Summary: A uniform framework of the linearized fully decoupled fully discrete schemes is developed and investigated with low order nonconforming finite element methods (FEMs) for nuclear reactor model. On the one hand, a general scheme called Scheme I is constructed. Then, the modified Ritz projection and mathematical induction are used to obtain its unconditional optimal error estimate in the \(L^2\)-norm and superclose estimates in the broken \(H^1\)-norm, thereby correcting the mistake in previous literature and eliminating the need for the so-called popular time-space splitting method. On the other hand, a new positivity-preserving scheme named Scheme II, which combines the traditional FEMs with cut-off post-processing method, is designed to avoid the non-physical oscillation in numerical calculations. Based on the results of Scheme I, an optimal error estimate in the \(L^2\)-norm for Scheme II is also derived. Finally, taking the nonconforming \(EQ_1^{rot}\) element as an example, some numerical experiments are provided to demonstrate the theoretical results. It is worth noting that the analysis presented herein is also suitable for simulating nuclear reactor model in the narrow channel with anisotropic meshes.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
82D75 Nuclear reactor theory; neutron transport
35Q82 PDEs in connection with statistical mechanics
Full Text: DOI

References:

[1] Pao, C. V., On nonlinear reaction-diffusion systems, J Math Anal Appl, 87, 1, 165-198, 1982 · Zbl 0488.35043
[2] Pao, C. V., Bifurcation analysis on a nonlinear diffusion system in reactor dynamics, Appl Anal, 9, 2, 107-119, 1979 · Zbl 0404.45009
[3] Kastenberg, W. E.; Chambré, P. L., On the stability of nonlinear space-dependent reactor kinetics, Nucl Sci Eng, 31, 1, 67-79, 1968
[4] Yan, Z. Q., The global existence and blowing-up property of solutions for a nuclear model, J Math Anal Appl, 167, 1, 74-83, 1992 · Zbl 0767.35041
[5] Gianni, A., Long term dynamics of a reaction-diffusion system, J Differ Equ, 235, 1, 298-307, 2007 · Zbl 1116.35014
[6] Julián, L. G., The steady states of a non-cooperative model of nuclear reactors, J Differ Equ, 246, 1, 358-372, 2009 · Zbl 1154.35057
[7] Chen, R. P.; Li, X. Y., The steady states of a non-cooperative model arising in reactor dynamics, Comput Math Appl, 72, 3, 594-602, 2016 · Zbl 1362.82056
[8] Zhou, J.; Shi, J. P., Uniqueness of the positive solution for a non-cooperative model of nuclear reactors, Appl Math Lett, 26, 10, 1005-1007, 2013 · Zbl 1524.35325
[9] Chen, R. P.; Liu, J. Y.; Zhang, G. C.; Kong, X. Y., Positive radial solutions for a noncooperative resonant nuclear reactor model with sign-changing nonlinearities, J Inequal Appl, 2021, 1, 74, 2021 · Zbl 1504.35151
[10] Wang, M. J.; Wang, Y. J.; Tian, W. X.; Qiu, S. Z.; Su, G. H., Recent progress of CFD applications in PWR thermal hydraulics study and future directions, Ann Nucl Energy, 150, Article 107836 pp., 2021
[11] Gong, X.; Short, M. P.; Auger, T.; Charalampopoulou, E.; Lambrinou, K., Environmental degradation of structural materials in liquid lead-and lead-bismuth eutectic-cooled reactors, Prog Mater Sci, 126, Article 100920 pp., 2022
[12] Bonet, H.; Bonhomme, A.; Buck, C.; Fulber, K.; Hakenmuller, J., Constraints on elastic neutrino nucleus scattering in the fully coherent regime from the CONUS experiment, Phys Rev Lett, 126, 4, Article 041804 pp., 2021
[13] Yu, S. D.; Xu, S., Modeling of three-dimensional steady state non-linear heat transfer in CANDU nuclear fuel, Nucl Eng Des, 216, 1-3, 165-181, 2002
[14] Zhou, X. F., Jacobian-free Newton Krylov coarse mesh finite difference algorithm based on high-order nodal expansion method for three-dimensional nuclear reactor pin-by-pin multiphysics coupled models, Comput Phys Comm, 282, Article 108509 pp., 2023 · Zbl 07692473
[15] Yu, H.; Shao, N. Y.; Xia, G. L.; Peng, M. J., Development of two-dimensional hydrogen distribution model in small-scale spaces under severe accidents, Nucl Eng Des, 396, Article 111894 pp., 2022
[16] Burman, E.; Ern, A., Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence, Math Comp, 74, 252, 1637-1652, 2005 · Zbl 1078.65088
[17] Yu, B. Y.; Yang, H. T.; Li, Y. H.; Yuan, G. W., Monotonicity correction for the finite element method of anisotropic diffuison problems, Commun Comput Phys, 31, 5, 1489-1524, 2022 · Zbl 1486.65269
[18] Barrenechea, G. R.; John, V.; Knobloch, P., Analysis of algebraic flux correction schemes, SIAM J Numer Anal, 54, 4, 2427-2451, 2016 · Zbl 1346.65048
[19] Dmitri, K.; Rainald, L.; Stefan, T., Flux-corrected transport : principles, algorithms, and applications, 2012, Springer: Springer New York
[20] Feng, X. L.; Huang, X. L.; Wang, K., Error estimate of unconditionally stable and decoupled linear positivity-preserving FEM for the chemotaxis-Stokes equations, SIAM J Numer Anal, 59, 6, 3052-3076, 2021 · Zbl 1480.65254
[21] Lu, C. N.; Huang, W. Z.; Vleck, V.; Erik, S., The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations, J Comput Phys, 242, 24-36, 2013 · Zbl 1297.65097
[22] Li, B. Y.; Yang, J.; Zhou, Z., Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations, SIAM J Sci Comput, 42, 6, A3957-A3978, 2020 · Zbl 1456.65117
[23] Yang, J.; Yuan, Z. M.; Zhou, Z., Arbitrarily high-order maximum bound preserving schemes with cut-off postprocessing for Allen-Cahn equations, J Sci Comput, 90, 2, 76, 2022 · Zbl 1518.65113
[24] Ciarlet, P. G., The finite method for elliptic problem, 1978, North-Holland Publ.: North-Holland Publ. Amsterdam · Zbl 0383.65058
[25] Chen, S. C.; Shi, D. Y.; Zhao, Y. C., Anisotropic interpolations and quasi-wilson element for narrow quadrilateral meshes, IMA J Numer Anal, 24, 77-95, 2004 · Zbl 1049.65129
[26] Apel, T., Anisotropic finite elements: local estimates and applications, 1999, B.G. Teubner Stuttgart Leipzig · Zbl 0917.65090
[27] Shi, D. Y.; Ren, J. C., Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anisotropic meshes, Nonlinear Anal, 71, 9, 3842-3852, 2009 · Zbl 1166.76030
[28] Shi, D. Y.; Mao, S. P.; Chen, S. C., An anisotropic nonconforming finite element with some superconvergence results, J Comput Math, 23, 3, 261-274, 2005 · Zbl 1074.65133
[29] Shi, D. Y.; Yang, H. J., A new approach of superconvergence analysis for nonlinear BBM equation on anisotropic meshes, Appl Math Lett, 58, 74-80, 2016 · Zbl 1337.65122
[30] Shi, D. Y.; Wu, Y. M., Nonconforming quadrilateral finite element method for nonlinear Kirchhoff-type equation with damping, Math Methods Appl Sci, 43, 5, 2558-2576, 2020 · Zbl 1452.65248
[31] Wang, J. L., A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation, J Sci Comput, 60, 2, 390-407, 2014 · Zbl 1306.65257
[32] Li, D. F.; Wang, J. L., Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system, J Sci Comput, 72, 2, 892-915, 2017 · Zbl 1377.65118
[33] Shi, D. Y.; Wang, J. J., Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation, J Sci Comput, 72, 3, 1093-1118, 2017 · Zbl 1407.65162
[34] Huang, M. Y., Numerical computation method for evolution equation, 2004, Science Press: Science Press Beijing
[35] Mao, S. P.; Shi, Z. C., Nonconforming rotated \(Q^1\) element on non-tensor product anisotropic meshes, Sci China A, 49, 10, 1363-1375, 2006 · Zbl 1112.65121
[36] Shi, D. Y.; Pei, L. F., Low order Crouzeix-Raviart type nonconforming finite element methods for the 3D time-dependent Maxwell’s equations, Appl Math Comput, 211, 1, 1-9, 2009 · Zbl 1165.78006
[37] Apel, T.; Nicaise, S.; Schöberl, J., Crouzeix-Raviart type finite elements on anisotropic meshes, Numer Math, 89, 2, 193-223, 2001 · Zbl 0989.65130
[38] Shi, D. Y.; Zhang, B. Y., Nonconforming finite element method for nonlinear parabolic equations, J Syst Sci Complex, 23, 2, 395-402, 2010 · Zbl 1211.65129
[39] Shi, Z. C., A remark on the optimal order of convergence of Wilson’s nonconforming element, Math Numer Sin, 8, 2, 159-163, 1986 · Zbl 0607.65071
[40] Chen, S. C.; Shi, D. Y.; Ren, G. B., Three dimension quasi-Wilson element for flat hexahedron meshes, J Comput Math, 22, 2, 178-187, 2004 · Zbl 1048.74038
[41] Shi, D. Y.; Wang, L. L.; Liao, X., Nonconforming finite element analysis for Poisson eigenvalue problem, Comput Math Appl, 70, 5, 835-845, 2015 · Zbl 1443.65371
[42] Douglas, J.; Santos, J. E.; Sheen, D.; Ye, X., Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, RAIRO Math Model Anal Numer, 33, 4, 747-770, 1999 · Zbl 0941.65115
[43] Brenner, S. C., Forty years of the Crouzeix-Raviart element, Numer Methods Partial Differential Equations, 31, 367-396, 2015 · Zbl 1310.65142
[44] Shi, D. Y.; Chen, S. C.; Hagiwara, I., Convergence analysis for a nonconforming membrane element on anisotropic meshes, J Comput Math, 23, 4, 373-382, 2005 · Zbl 1120.65335
[45] Shi, D. Y.; Hao, X. B., Accuracy analysis for quasi-Carey elemenet, J Syst Sci Complex, 21, 3, 7, 2008 · Zbl 1173.65348
[46] Shi, D. Y.; Zhang, H. C., Convergence analysis of nonconforming quadrilateral finite element methods for nonlinear coupled Schrödinger-Helmholtz equations, J Comput Math, 2023
[47] Zhang, X.; Feng, W. P.; Zhang, J.; Chen, H. L., Simulation study on flow instability in parallel narrow rectangular channels for downward flow with different heating modes, Ann Nucl Energy, 133, 669-677, 2019
[48] Yang, L. X.; Guo, A.; Liu, D., Experimental investigation of subcooled vertical upward flow boiling in a narrow rectangular channel, Exp Heat Transfer, 29, 2, 221-243, 2016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.