×

Associative learning in a network model of Hermissenda crassicornis. (English) Zbl 0757.92010

Summary: A time-varying resistance-capacitance (RC) circuit computer model was constructed based on known membrane and synaptic properties of the visual-vestibular network of the marine snail Hermissenda crassicornis. Specific biophysical properties and synaptic connections of identified neurons are represented as lumped parameters (circuit elements) in the model; in the computer simulation, differential equations are approximated by difference equations. The model’s output, membrane potential, an indirect measure of firing frequency, closely parallels the behavioral and electrophysiologic outputs of Hermissenda in response to the same input stimuli presented during and after associative learning. The parallelism of the computer modeled and the biologic outputs suggests that the model captures the features necessary and sufficient for associative learning.

MSC:

92C20 Neural biology
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI

References:

[1] Alkon DL (1973) Intersensory interactions in Hermissenda. J Gen Physiol 62:185 · doi:10.1085/jgp.62.2.185
[2] Alkon DL (1975) A dual synaptic effect on hair cells in Hermissenda. J Gen Physiol 65:385 · doi:10.1085/jgp.65.3.385
[3] Alkon DL (1979) Voltage-dependent calcium and potassium ion conductances: a contingency mechanism for an associative model. Science 205:810–816 · doi:10.1126/science.223244
[4] Alkon DL (1984) Calcium-mediated reduction of ionic currents: a biophysical memory trace. Science 226:1037–1045 · doi:10.1126/science.6093258
[5] Alkon DL (1987) Memory traces in the brain. Cambridge University Press, Cambridge
[6] Alkon DL, Fuortes MGF (1972) Responses of photoreceptors in Hermissenda. J Gen Physiol 60:631–649 · doi:10.1085/jgp.60.6.631
[7] Alkon DL, Grossman Y (1978) Long-lasting depolarization and hyperpolarization in eye of Hermissenda. J Neurophysiol 41:1328–1342
[8] Alkon DL, Sunchea-Andres JV, Ito E, Oka K, Yoshioka T, Collin C (1992) Long-term transformation of an inhibitory into an excitatory GABA-ergic synaptic response. Proc Natl Acad Sci USA. In press
[9] Alkon DL, Sakakibara M (1985) Calcium activates and inactivates a photoreceptor soma potassium current. Biophys J 48:983–995 · doi:10.1016/S0006-3495(85)83861-3
[10] Alkon DL, Shoukimas JJ, Heldman E (1982) Primary changes of membrane currents during retention of associative learning. Science 215:693–695 · doi:10.1126/science.7058334
[11] Alkon DL, Sakakibara M, Forman R, Harrigan J, Lederhendler I, Farley J (1985) Reduction of two voltage dependent K+ currents mediates retention of a learned association. Behav Neural Biol 44:278–300 · doi:10.1016/S0163-1047(85)90296-1
[12] Alkon DL, Quek F, Vogl TP (1989) Computer modeling of associative learning. In: Touretzky DS (eds) Advances in neural information processing systems 1, Morgan Kaufman Publ. San Mateo, CA, pp 419–435
[13] Alkon DL, Blackwell KT, Barbour GS, Rigler AK, Vogl TP (1990) Pattern-recognition by an artificial network derived from biological neural systems. Biol Cybern 62:363–376 · Zbl 0691.92007 · doi:10.1007/BF00197642
[14] Alkon DL, Vogl TP, Blackwell KT (1991) Artificial learning networks derived from biological neural systems. In: Milutinovic V (eds) Prentice Hall Series on Neural Networks, Part III, Prentice Hall Publ. Englewood Cliffs
[15] Blackwell KT, Vogl TP, Hyman SD, Barbour GS, Alkon DL (1992) A new approach to the classification of hand-written characters. Pattern Recognition 25:655–666 · doi:10.1016/0031-3203(92)90082-T
[16] Collin CH, Ikeno JF, Harrigan I, Lederhendler II (1988) Sequential modification of membrane currents with classical conditioning. Biophys J 54:955–960 · doi:10.1016/S0006-3495(88)83031-5
[17] Crow TJ, Alkon DL (1978) Retention of an associative behavioral change in Hermissenda. Science 201:412–414 · doi:10.1126/science.694512
[18] DeFelice LJ, Alkon DL (1977) Voltage noise from hair cells during mechanical stimulation. Nature 269:613–615 · doi:10.1038/269613a0
[19] Detwiler PB, Alkon DL (1973) Hair cell interactions in the statocyst of Hermissenda. J Gen Physiol 62:618–642 · doi:10.1085/jgp.62.5.618
[20] DiFrancesco D (1985) The cardiac hyperpolarizing-activated current, if, origins and developments. Prog Biophys Mol Biol 46:163–183 · doi:10.1016/0079-6107(85)90008-2
[21] Eccles JC (1957) The physiology of synapses. Academic Press, New York
[22] Farley J (1987a) Contingency learning and causal detection in Hermissenda I. behavior. Behav Neurosci 101:13–27 · doi:10.1037/0735-7044.101.1.13
[23] Farley J (1987b) Contingency learning and causal detection in Hermissenda II. cellular mechanisms. Behav Neurosci 101:28–56 · doi:10.1037/0735-7044.101.1.28
[24] Farley J, Alkon DL (1982) Associated neural and behavioral change in Hermissenda: consequences of nervous system orientation for light and pairing specificity. J Neurophys 48:785–807
[25] Grossberg S (1987) Competitive learning: from interactive activation to adaptive resonance. Cogn Sci 11:23–63 · doi:10.1111/j.1551-6708.1987.tb00862.x
[26] Grover LM, Farley J (1987) Temporal order sensitivity of associative neural and behavioral changes in Hermissenda. Behav Neurosci 5:658–675 · doi:10.1037/0735-7044.101.5.658
[27] Hille B (1984) Ionic channels of excitable membrane, Chap 1. Sinauer Associates, Inc., Sunderland, pp 1–19
[28] Hodgkin AL (1938) The subthreshold potentials in a crustacean nerve fiber. Proc R Soc London Ser B 126:87 · doi:10.1098/rspb.1938.0048
[29] Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544
[30] Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2254–2258 · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[31] Katz B, Miledi R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol 224:665–699
[32] Kohonen T (1988) Self-organization and associative memory. Springer, Berlin Heidelberg New York · Zbl 0659.68100
[33] Kuffler SW, Nichols JG (1976) From neuron to brain. Sinauer Associates, Inc., Sunderland
[34] Lederhendler II, Alkon DL (1989) The interstimulus interval and classical conditioning in the marine snail Hermissenda crassicornis, Behav Brain Res 35:75–80 · doi:10.1016/S0166-4328(89)80010-5
[35] Lederhendler II, Collin C, Alkon DL (1990) Sequential changes of potassium currents in Hermissenda type B photoreceptor during early stages of classical conditioning. Neurosci Lett 110:28–33 · doi:10.1016/0304-3940(90)90782-5
[36] Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP Mag 4
[37] Matzel LD, Alkon DL (1990) GABA-induced protein kinase activation is enhanced when paired with post-synaptic depolarization. Soc Neurosci Abstr 16:918
[38] Matzel LD, Alkon DL (1991) GABA-induced potentiation of neuronal excitability is enhanced by post-synaptic calcium: a mechanism for temporal contiguity in associative learning. Brain Res 554:77–84 · doi:10.1016/0006-8993(91)90174-T
[39] Matzel LD, Schreurs BG, Lederhendler I, Alkon DL (1990) Acquisition of conditioned associations in Hermissenda: additive effects of contiguity and the forward interstimulus interval. Behav Neurosci 104:597–606 · doi:10.1037/0735-7044.104.4.597
[40] Rumelhart DE, McClelland (eds) (1986) Parallel distributed processing: explorations in the microstructure of cognition, MIT Press, Cambridge
[41] Sakakibara M, Ikeno H, Usui S, Collin C, Alkon DL (1992) Reconstruction of ionic currents in a molluscan photoreceptor. Submitted to Biophysical J
[42] Vogl TP, Blackwell KT, Hyman SD, Barbour GS, Alkon DL (1991) Classification of hand-written digits and Japanese Kanji. Proceedings of IJCNN ’91. IEEE, NY, Vol I, pp 97–102
[43] Vogl TP, Blackwell KT, Irvine JM, Barbour GS, Hyman SD, Alkon DL (1992a) Dystal: A neural network architecture based on biological associative learning. In: Wilson CL, Omidvar OM (eds) Progress in Neural Networks, Vol III
[44] Vogl TP, Blackwell KT, Barbour GS, Alkon DL (1992b) Science of artificial neural networks, Dennis W. Ruck (eds) Proc. SPIE 1710, pp 165–176, Publ. SPIE, Bellingham, WA
[45] Werness SA, Fay SD, Vogl TP, Blackwell KT, Alkon DL (1992) Associative learning in a model of Hermissenda crassicornis II. Experiments. Biol Cybern 68:125–133 · Zbl 0757.92010 · doi:10.1007/BF00201434
[46] West A, Barnes E, Alkon DL (1982) Primary changes of voltage responses during retention of associative learning. J Neurophysiol 48:1243–1255
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.