×

Optimal computation of anisotropic galaxy three point correlation function multipoles using 2DFFTLOG formalism. (English) Zbl 1485.83185

Summary: We study two key issues militating against the use of the anisotropic three-point correlation function (3PCF) for cosmological parameter inference: difficulties with its computational estimation and high-dimensionality. We show how high-dimensionality may be reduced significantly by multipole decompositions of all angular dependence. This allows deriving the full expression for the multipole moments of the anisotropic 3PCF and its covariance matrix in a basis where the dimensionality reduces from nine to two at each multipole in the plane-parallel limit. We use 2D FFTLog formalism to show how the multipole moments with double momentum integrals over the product of bispectrum and two highly oscillating spherical Bessel functions and its covariance with double momentum integrals over the product of three galaxy power spectra and a combination of four highly oscillating spherical Bessel functions may be computed optimally.

MSC:

83F05 Relativistic cosmology
81V35 Nuclear physics
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Q05 Hydro- and aero-acoustics
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
62H20 Measures of association (correlation, canonical correlation, etc.)
83E15 Kaluza-Klein and other higher-dimensional theories
81V60 Mono-, di- and multipole moments (EM and other), gyromagnetic relations
62J10 Analysis of variance and covariance (ANOVA)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

References:

[1] Gil-Marín, Héctor; Noreña, Jorge; Verde, Licia; Percival, Will J.; Wagner, Christian; Manera, Marc, The power spectrum and bispectrum of SDSS DR11 BOSS galaxies — I. Bias and gravity, Mon. Not. Roy. Astron. Soc., 451, 539-580 (2015) · doi:10.1093/mnras/stv961
[2] Bartolo, N.; Komatsu, E.; Matarrese, Sabino; Riotto, A., Non-Gaussianity from inflation: Theory and observations, Phys. Rept., 402, 103-266 (2004) · doi:10.1016/j.physrep.2004.08.022
[3] Creminelli, Paolo; Zaldarriaga, Matias, CMB 3-point functions generated by non-linearities at recombination, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.083532
[4] Creminelli, Paolo; Gleyzes, Jérôme; Hui, Lam; Simonović, Marko; Vernizzi, Filippo, Single-Field Consistency Relations of Large Scale Structure. Part III: Test of the Equivalence Principle, JCAP, 06 (2014) · doi:10.1088/1475-7516/2014/06/009
[5] Chen, Xingang; Huang, Min-xin; Kachru, Shamit; Shiu, Gary, Observational signatures and non-Gaussianities of general single field inflation, JCAP, 01 (2007) · doi:10.1088/1475-7516/2007/01/002
[6] Scoccimarro, Roman; Hui, Lam; Manera, Marc; Chan, Kwan Chuen, Large-scale Bias and Efficient Generation of Initial Conditions for Non-Local Primordial Non-Gaussianity, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083002
[7] Arkani-Hamed, Nima; Maldacena, Juan, Cosmological Collider Physics (2015)
[8] Slepian, Zachary; Eisenstein, Daniel J., Computing the three-point correlation function of galaxies in 𝒪(N^2) time, Mon. Not. Roy. Astron. Soc., 454, 4142-4158 (2015) · doi:10.1093/mnras/stv2119
[9] Szapudi, Istvan, Three - point statistics from a new perspective, Astrophys. J. Lett., 605, L89 (2004) · doi:10.1086/420894
[10] Slepian, Zachary, Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies, Mon. Not. Roy. Astron. Soc., 469, 1738-1751 (2017) · doi:10.1093/mnras/stx488
[11] Slepian, Zachary; Eisenstein, Daniel J., Modelling the large-scale redshift-space 3-point correlation function of galaxies, Mon. Not. Roy. Astron. Soc., 469, 2059-2076 (2017) · doi:10.1093/mnras/stx490
[12] Slepian, Zachary; Eisenstein, Daniel J., A practical computational method for the anisotropic redshift-space three-point correlation function, Mon. Not. Roy. Astron. Soc., 478, 1468-1483 (2018) · doi:10.1093/mnras/sty1063
[13] Friesen, Brian, Galactos: Computing the Anisotropic 3-Point Correlation Function for 2 Billion Galaxies (2017) · doi:10.1145/3126908.3126927
[14] Scoccimarro, Roman; Colombi, Stephane; Fry, James N.; Frieman, Joshua A.; Hivon, Eric; Melott, Adrian, Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J., 496, 586 (1998) · doi:10.1086/305399
[15] Scoccimarro, Roman, The bispectrum: from theory to observations, Astrophys. J., 544, 597 (2000) · doi:10.1086/317248
[16] Smith, Robert E.; Sheth, Ravi K.; Scoccimarro, Roman, An analytic model for the bispectrum of galaxies in redshift space, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.023523
[17] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, A complete FFT-based decomposition formalism for the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 484, 364-384 (2019) · doi:10.1093/mnras/sty3249
[18] D.A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific (1988).
[19] Fang, Xiao; Eifler, Tim; Krause, Elisabeth, 2D-FFTLog: Efficient computation of real space covariance matrices for galaxy clustering and weak lensing, Mon. Not. Roy. Astron. Soc., 497, 2699-2714 (2020) · doi:10.1093/mnras/staa1726
[20] Hamilton, A. J. S., Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy. Astron. Soc., 312, 257-284 (2000) · doi:10.1046/j.1365-8711.2000.03071.x
[21] A.J.S. Hamilton, FFTLog: Fast Fourier or Hankel transform, 2015.
[22] BOSS Collaboration; Wang, Yuting, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space, Mon. Not. Roy. Astron. Soc., 469, 3762-3774 (2017) · doi:10.1093/mnras/stx1090
[23] Zarrouk, Pauline, The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2, Mon. Not. Roy. Astron. Soc., 477, 1639-1663 (2018) · doi:10.1093/mnras/sty506
[24] BOSS Collaboration; Ross, Ashley J., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Observational systematics and baryon acoustic oscillations in the correlation function, Mon. Not. Roy. Astron. Soc., 464, 1168-1191 (2017) · doi:10.1093/mnras/stw2372
[25] Euclid Collaboration; Blanchard, A., Euclid preparation: VII. Forecast validation for Euclid cosmological probes, Astron. Astrophys., 642, A191 (2020) · doi:10.1051/0004-6361/202038071
[26] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[27] Santos, Mario G.; Bourke, Tyler L., Cosmology from a SKA HI intensity mapping survey, PoS, AASKA14, 019 (2015) · doi:10.22323/1.215.0019
[28] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[29] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[30] Ellis, G. F. R., Republication of: Relativistic cosmology, Gen. Rel. Grav., 41, 581-660 (2009) · Zbl 1163.83302 · doi:10.1007/s10714-009-0760-7
[31] Challinor, Anthony; Lewis, Antony, The linear power spectrum of observed source number counts, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043516
[32] Alonso, David; Bull, Philip; Ferreira, Pedro G.; Maartens, Roy; Santos, M., Ultra large-scale cosmology in next-generation experiments with single tracers, Astrophys. J., 814, 145 (2015) · doi:10.1088/0004-637X/814/2/145
[33] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[34] Umeh, Obinna; Koyama, Kazuya; Maartens, Roy; Schmidt, Fabian; Clarkson, Chris, General relativistic effects in the galaxy bias at second order, JCAP, 05 (2019) · Zbl 1481.83121 · doi:10.1088/1475-7516/2019/05/020
[35] Yankelevich, Victoria; Porciani, Cristiano, Cosmological information in the redshift-space bispectrum, Mon. Not. Roy. Astron. Soc., 483, 2078-2099 (2019) · doi:10.1093/mnras/sty3143
[36] Zheng, Zheng, Projected three - point correlation functions and galaxy bias, Astrophys. J., 614, 527-532 (2004) · doi:10.1086/423838
[37] Bertacca, Daniele, Observed galaxy number counts on the light cone up to second order: III. Magnification bias, Class. Quant. Grav., 32 (2015) · Zbl 1327.85001 · doi:10.1088/0264-9381/32/19/195011
[38] Yoo, Jaiyul; Zaldarriaga, Matias, Beyond the Linear-Order Relativistic Effect in Galaxy Clustering: Second-Order Gauge-Invariant Formalism, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.023513
[39] Di Dio, Enea; Durrer, Ruth; Marozzi, Giovanni; Montanari, Francesco, Galaxy number counts to second order and their bispectrum, JCAP, 12 (2014) · doi:10.1088/1475-7516/2014/12/017
[40] Umeh, Obinna; Maartens, Roy; Santos, Mario, Nonlinear modulation of the HI power spectrum on ultra-large scales. I, JCAP, 03 (2016) · doi:10.1088/1475-7516/2016/03/061
[41] Umeh, Obinna, Imprint of non-linear effects on HI intensity mapping on large scales, JCAP, 06 (2017) · Zbl 1515.85039 · doi:10.1088/1475-7516/2017/06/005
[42] Matsubara, T., Peculiar velocity effect on galaxy correlation functions in nonlinear clustering regime, Astrophys. J., 424, 30-41 (1994) · doi:10.1086/173869
[43] Scoccimarro, Roman; Couchman, H. M. P.; Frieman, Joshua A., The Bispectrum as a Signature of Gravitational Instability in Redshift-Space, Astrophys. J., 517, 531-540 (1999) · doi:10.1086/307220
[44] Bianchi, Davide; Gil-Marín, Héctor; Ruggeri, Rossana; Percival, Will J., Measuring line-of-sight dependent Fourier-space clustering using FFTs, Mon. Not. Roy. Astron. Soc., 453, L11-L15 (2015) · doi:10.1093/mnrasl/slv090
[45] Gagrani, Praful; Samushia, Lado, Information Content of the Angular Multipoles of Redshift-Space Galaxy Bispectrum, Mon. Not. Roy. Astron. Soc., 467, 928-935 (2017) · doi:10.1093/mnras/stx135
[46] Garcia, Karolina; Slepian, Zachary, Improving the Line of Sight for the Anisotropic 3-Point Correlation Function of Galaxies: Centroid and Unit-Vector-Average Methods Scaling as 𝒪(N^2) (2020)
[47] Sugiyama, Naonori S.; Saito, Shun; Beutler, Florian; Seo, Hee-Jong, Perturbation theory approach to predict the covariance matrices of the galaxy power spectrum and bispectrum in redshift space, Mon. Not. Roy. Astron. Soc., 497, 1684-1711 (2020) · doi:10.1093/mnras/staa1940
[48] Lee, Hayden; Dvorkin, Cora, Cosmological Angular Trispectra and Non-Gaussian Covariance, JCAP, 05 (2020) · Zbl 1492.85019 · doi:10.1088/1475-7516/2020/05/044
[49] Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias, Efficient evaluation of angular power spectra and bispectra, JCAP, 11 (2017) · doi:10.1088/1475-7516/2017/11/054
[50] Alcock, C.; Paczynski, B., An evolution free test for non-zero cosmological constant, Nature, 281, 358-359 (1979) · doi:10.1038/281358a0
[51] J.D. Talman, Numerical fourier and bessel transforms in logarithmic variables, J. Comp. Phys.29 (1978) 35. · Zbl 0392.65050 · doi:10.1016/0021-9991(78)90107-9
[52] J.D. Talman, NumSBT: A subroutine for calculating spherical bessel transforms numerically, Comp. Phys. Commun.180 (2009) 332. · Zbl 1198.65046 · doi:10.1016/j.cpc.2008.10.003
[53] McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A., FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory, JCAP, 09 (2016) · Zbl 1515.83006 · doi:10.1088/1475-7516/2016/09/015
[54] Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A., Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals, JCAP, 04 (2018) · Zbl 1536.83203 · doi:10.1088/1475-7516/2018/04/030
[55] Fang, Xiao; Krause, Elisabeth; Eifler, Tim; MacCrann, Niall, Beyond Limber: Efficient computation of angular power spectra for galaxy clustering and weak lensing, JCAP, 05 (2020) · Zbl 1491.83020 · doi:10.1088/1475-7516/2020/05/010
[56] Harris, Charles R., Array programming with NumPy, Nature, 585, 357-362 (2020) · doi:10.1038/s41586-020-2649-2
[57] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, Mineola, NY, U.S.A. (1972) · Zbl 0543.33001
[58] F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18), http://mpmath.org/, 2013.
[59] Virtanen, Pauli, SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python, Nature Meth., 17, 261 (2020) · doi:10.1038/s41592-019-0686-2
[60] A. Meurer et al., Sympy: symbolic computing in python, PeerJ Computer Science3 (2017) e103.
[61] Villa, Eleonora; Rampf, Cornelius, Relativistic perturbations in ΛCDM: Eulerian & Lagrangian approaches, JCAP, 01 (2016) · Zbl 07462680 · doi:10.1088/1475-7516/2016/01/030
[62] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.