×

Large deviations results for subexponential tails, with applications to insurance risk. (English) Zbl 0879.60020

Summary: Consider a random walk or Lévy process \(\{S_t\}\) and let \(\tau(u) = \inf \{t \geq 0:S_t >u\}\), \(\mathbb{P}^{(u)}(\cdot) = \mathbb{P}(\cdot|\tau(u) < \infty)\). Assuming that the upwards jumps are heavy-tailed, say subexponential (e.g. Pareto, Weibull or lognormal), the asymptotic form of the \(\mathbb{P}^{(u)}\)-distribution of the process \(\{S_t\}\) up to time \(\tau (u)\) is described as \(u \rightarrow \infty\). Essentially, the results confirm the folklore that level crossing occurs as result of one big jump. Particular sharp conclusions are obtained for down-wards skip-free processes like the classical compound Poisson insurance risk process where the formulation is in terms of total variation convergence. The ideas of the proof involve excursions and path decompositions for Markov processes. As a corollary, it follows that for some deterministic function \(a(u)\), the limiting \(\mathbb{P}^{(u)}\)-distribution of \(\tau (u)/a(u)\) is either Pareto or exponential, and corresponding approximations for the finite time ruin probabilities are given.

MSC:

60F10 Large deviations
60K10 Applications of renewal theory (reliability, demand theory, etc.)
Full Text: DOI

References:

[1] Anantharam, V., How large delays build up in a GI/GI/1 queue, Queueing Systems, 5, 345-368 (1988) · Zbl 0695.60092
[2] Asmussen, S., Conditioned limit theorems relating a random walk to its associate, with applications to risk reserve processes and the GI/G/1 queue, Adv. Appl. Probab., 14, 143-170 (1982) · Zbl 0501.60076
[3] Asmussen, S., Approximations for the probability of ruin within finite time, Scand. Act. J., 57 (1985) · Zbl 0568.62092
[4] Asmussen, S., Applied Probability and Queues (1987), Wiley: Wiley Chichester · Zbl 0624.60098
[5] Asmussen, S., Aspects of matrix Wiener-Hopf factorisation in applied probability, Math. Scientist, 14, 101-116 (1989) · Zbl 0688.60055
[6] Asmussen, S., Ruin Probabilities (1997), World Scientific Singapore, to appear · Zbl 0960.60003
[7] Asmussen, S.; Henriksen, L. Fløe; Klüppelberg, C., Large claims approximations for risk processes in a Markovian environment, Stochastic Processes Appl., 54, 29-43 (1994) · Zbl 0814.60067
[8] Asmussen, S.; Nielsen, H. M., Ruin probabilities via local adjustment coefficients, J. Appl. Probab., 33, 736-755 (1995) · Zbl 0834.60099
[9] Asmussen, S.; Schmidt, V., Ladder height distributions with marks, Stochastic Processes Appl., 58, 105-119 (1995) · Zbl 0829.60093
[10] Asmussen, S.; Teugels, J. L., Convergence rates for M/G/1 queues and ruin problems with heavy tails, J. Appl. Probab., 35 (1997)
[11] Balkema, A. A.; de Haan, L., Residual life-time at great age, Ann. Probab., 2, 792-804 (1974) · Zbl 0295.60014
[12] Bardorff-Nielsen, O.; Schmidli, H., Saddlepoint approximations for the probability of ruin in finite time, Scand. Actuarial J., 169-186 (1995) · Zbl 0836.62082
[13] Bertoin, J., Splitting at the infimum and excursions in half-lines for random walks and Lévy processes, Stochastic Processes Appl., 47, 17-35 (1994) · Zbl 0786.60101
[14] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[15] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0617.26001
[16] Bucklew, J. A., Large Deviation Techniques in Decision, (Simulation and Estimation (1990), Wiley: Wiley New York) · Zbl 0665.94006
[17] Cramér, H., On the Mathematical Theory of Risk, (Martin-Löf, A., Skandia Jubilee Volume, Stockholm (1994), Springer: Springer Berlin), Reprinted in H. Cramér, Collected Works · JFM 56.1098.05
[18] Dembo, A.; Zeitouni, O., Large Deviations, (Techniques and Applications (1993), Jones and Bartlett: Jones and Bartlett Boston) · Zbl 0935.60019
[19] Deuschel, J.-D.; Stroock, D. W., Large Deviations (1989), Academic Press: Academic Press Duluth, London · Zbl 0682.60018
[20] Djehiche, B., A large deviation estimate for ruin probabilities, Scand. Act. J., 42-59 (1993) · Zbl 0786.62099
[21] Dufresne, F.; Gerber, H. U., The surpluses immediately before and at ruin, and the amount of claim causing ruin, Insurance: Math. Economics, 7, 193-199 (1988) · Zbl 0674.62072
[22] Durrett, R., Conditioned limit theorems for random walks with negative drift, Z. Wahrscheinlichkeitsth. Verw. Geb., 52, 277-287 (1980) · Zbl 0416.60021
[23] Embrechts, P.; Goldie, C. M., On closure and factorization properties of subexponential and related distributions, J. Austral. Math. Soc. A, 29, 243-256 (1980) · Zbl 0425.60011
[24] Embrechts, P.; Veraverbeke, N., Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Math. Economics, 1, 55-72 (1982) · Zbl 0518.62083
[25] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling Extremal Events for Insurance and Finance (1997), Springer: Springer Berlin, to appear · Zbl 0873.62116
[26] Feller, W., An Introduction to Probability Theory and its Applications II (1971), Wiley: Wiley New York · Zbl 0219.60003
[27] Fitzsimmons, P. J., On the excursions of Markov processes in classical duality, Probab. Theory Related Fields, 75, 159-178 (1987) · Zbl 0616.60070
[28] Geluk, J. L.; de Haan, L., Regular Variation, Extensions and Tauberian Theorems, (CWI Tract 40 (1987), CWI: CWI Amsterdam) · Zbl 0624.26003
[29] Goldie, C. M.; Resnick, S. I., Distributions that are both subexponential and in the domain of attraction of an extreme-value distribution, Adv. Appl. Probab., 20, 706-718 (1988) · Zbl 0659.60028
[30] de Haan, L., On Regular Variation and Its Application to Weak Convergence of Sample Extremes, (Mathematical Center Tract 32 (1970), Mathematisch Centrum: Mathematisch Centrum Amsterdam) · Zbl 0226.60039
[31] Kaspi, H., Excursions laws of Markov processes in classical duality, Ann. Probab., 13, 492-518 (1985) · Zbl 0566.60075
[32] Klüppelberg, C., Estimation of ruin probabilities by means of hazard rates, Insurance: Math. Economics, 8, 279-285 (1987) · Zbl 0686.62093
[33] Klüppelberg, C., Subexponential distributions and integrated tails, J. Appl. Probab., 25, 132-141 (1988) · Zbl 0651.60020
[34] C. Klüppelberg and T. Mikosch, Large deviations of heavy-tailed random sums with applications in insurance and finance, J. Appl. Probab. 34, to appear.; C. Klüppelberg and T. Mikosch, Large deviations of heavy-tailed random sums with applications in insurance and finance, J. Appl. Probab. 34, to appear. · Zbl 0903.60021
[35] Martin-Löf, A., (Gut, A.; Holst, J., Entropy estimates for ruin probabiliites (1983), Probability and Mathematical Statistics), 29-39
[36] Martin-Löf, A., Entropy, a useful concept in risk theory, Scand. Act. J., 223-235 (1986) · Zbl 0649.62098
[37] Resnick, S. I., Extreme Values, Regular Variation, and Point Processes (1987), Springer: Springer New York · Zbl 0633.60001
[38] Segerdahl, C.-O., When does ruin occur in the collective theory of risk?, Skand. Aktuar Tidsskr., 22-36 (1955) · Zbl 0067.12105
[39] Slud, E.; Hoesman, C., Moderate- and large-deviation probabilities in actuarial risk theory, Adv. Appl. Probab., 21, 725-741 (1989) · Zbl 0723.62063
[40] Veraverbeke, N., Asymptotic behaviour of Wiener-Hopf factors of a random walk, Stochastic Processes Appl., 5, 27-37 (1977) · Zbl 0353.60073
[41] Williams, D., Diffusions, Markov Processes, and Martingales (1979), Wiley: Wiley Chichester · Zbl 0402.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.