×

Robust clustering with adaptive order graph learning. (English) Zbl 1535.62034

Summary: Non-negative matrix factorization and spectral clustering are widely recognized techniques in data analysis due to their distinctive geometric interpretation and proven effectiveness across various applications. However, despite their popularity, these methods are not without their limitations. Specifically, they are susceptible to noise (outliers), which can significantly impact their clustering performance. Furthermore, their ability to learn spatial information heavily relies on the quality of the initial adjacency matrix. To mitigate the mentioned limitations, this paper proposes a novel clustering approach that integrates non-negative matrix factorization with spectral clustering. The proposed method utilizes a novel robust loss function to quantify the reconstruction error of samples, thereby improving the model’s capacity to handle noise (outliers) and enhance clustering performance. Additionally, our method incorporates an adaptive-order graph learning strategy that enhances the model’s adaptability to initial adjacency matrices. To optimize the proposed model, we have devised a highly efficient algorithm and conducted a analysis of its convergence properties. Experimental results on diverse datasets substantiate the effectiveness of our method in robust clustering and spatial learning tasks.

MSC:

62H30 Classification and discrimination; cluster analysis (statistical aspects)
15A23 Factorization of matrices
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI

References:

[1] Liu, X., Simplemkkm: simple multiple kernel k-means, IEEE Trans. Pattern Anal. Mach. Intell., 1-13 (2022)
[2] Wu, C.; Yu, D., Generalized possibilistic c-means clustering with double weighting exponents, Inf. Sci., 645, Article 119283 pp. (2023) · Zbl 07841208
[3] Chalmers, E.; Gruber, A. J.; Luczak, A., Hippocluster: an efficient, hippocampus-inspired algorithm for graph clustering, Inf. Sci., 639, Article 118999 pp. (2023)
[4] He, D.; Tang, Z.; Chen, Q.; Han, Z.; Zhao, D.; Sun, F., A two-stage deep graph clustering method for identifying the evolutionary patterns of the time series of animation view counts, Inf. Sci., 642, Article 119155 pp. (2023)
[5] Lee, D. D.; Seung, H. S., Learning the parts of objects by non-negative matrix factorization, Nature, 401, 6755, 788-791 (1999) · Zbl 1369.68285
[6] He, S.; Guo, M.; Li, Z.; Lei, Y.; Zhou, S.; Xie, K.; Xiong, N. N., A joint matrix factorization and clustering scheme for irregular time series data, Inf. Sci., 644, Article 119220 pp. (2023) · Zbl 07837655
[7] Hedjam, R.; Abdesselam, A.; Melgani, F., Nmf with feature relationship preservation penalty term for clustering problems, Pattern Recognit., 112, Article 107814 pp. (2021)
[8] Chen, K.; Che, H.; Li, X.; Leung, M.-F., Graph non-negative matrix factorization with alternative smoothed l 0 regularizations, Neural Comput. Appl., 35, 14, 9995-10009 (2023)
[9] Li, T.; Tang, J.; Wan, Z., An alternating nonmonotone projected Barzilai-Borwein algorithm of nonnegative factorization of big matrices, Data Min. Knowl. Discov., 35, 5, 1972-2008 (2021) · Zbl 1483.68307
[10] Bai, L.; Liang, J., A categorical data clustering framework on graph representation, Pattern Recognit., 128, Article 108694 pp. (2022)
[11] Wu, D.; Chang, W.; Lu, J.; Nie, F.; Wang, R.; Li, X., Adaptive-order proximity learning for graph-based clustering, Pattern Recognit., 126, Article 108550 pp. (2022)
[12] Cai, D.; He, X.; Han, J.; Huang, T. S., Graph regularized nonnegative matrix factorization for data representation, IEEE Trans. Pattern Anal. Mach. Intell., 33, 8, 1548-1560 (2011)
[13] Liu, H.; Yang, Z.; Yang, J.; Wu, Z.; Li, X., Local coordinate concept factorization for image representation, IEEE Trans. Neural Netw. Learn. Syst., 25, 6, 1071-1082 (2014)
[14] Trigeorgis, G.; Bousmalis, K.; Zafeiriou, S.; Schuller, B. W., A deep matrix factorization method for learning attribute representations, IEEE Trans. Pattern Anal. Mach. Intell., 39, 3, 417-429 (2017)
[15] Huang, S.; Kang, Z.; Xu, Z.; Liu, Q., Robust deep k-means: an effective and simple method for data clustering, Pattern Recognit., 117, Article 107996 pp. (2021)
[16] Peng, S.; Ser, W.; Chen, B.; Lin, Z., Robust semi-supervised nonnegative matrix factorization for image clustering, Pattern Recognit., 111, Article 107683 pp. (2021)
[17] Kong, D.; Ding, C.; Huang, H., Robust nonnegative matrix factorization using \(\ell_{21}\)-norm, (Proceedings of the 20th. Proceedings of the 20th, ACM International Conference on Information and Knowledge Management, vol. 10 (2011)), 673-682
[18] Wang, Q.; He, X.; Jiang, X.; Li, X., Robust bi-stochastic graph regularized matrix factorization for data clustering, IEEE Trans. Pattern Anal. Mach. Intell., 1 (2020)
[19] Scitovski, R.; Sabo, K.; Grahovac, D.; Ungar, Š., Minimal distance index — a new clustering performance metrics, Inf. Sci., 640, Article 119046 pp. (2023)
[20] Wang, F.; Li, L.; Liu, Z., Stratification-based semi-supervised clustering algorithm for arbitrary shaped datasets, Inf. Sci., 639, Article 119004 pp. (2023)
[21] Gu, S.; Chung, F.-L.; Wang, S., Fuzzy style flat-based clustering, Inf. Sci., 644, Article 119321 pp. (2023)
[22] Huang, S.; Xu, Z.; Kang, Z.; Ren, Y., Regularized nonnegative matrix factorization with adaptive local structure learning, Neurocomputing, 382, 196-209 (2020)
[23] Tang, J.; Feng, H., Robust local-coordinate non-negative matrix factorization with adaptive graph for robust clustering, Inf. Sci., 610, 1058-1077 (2022) · Zbl 07825491
[24] Huang, J.; Nie, F.; Huang, H.; Ding, C., Robust manifold nonnegative matrix factorization, ACM Trans. Knowl. Discov. Data, 8, 3 (Jun. 2014)
[25] Dornaika, F.; El Hajjar, S., Single phase multi-view clustering using unified graph learning and spectral representation, Inf. Sci., 645, Article 119366 pp. (2023)
[26] Golzari Oskouei, A.; Ali Balafar, M.; Motamed, C., Rdeic-lfw-dss: resnet-based deep embedded image clustering using local feature weighting and dynamic sample selection mechanism, Inf. Sci., Article 119374 pp. (2023)
[27] Zhang, Z., Parameter estimation techniques: a tutorial with application to conic fitting, Image Vis. Comput., 15, 1, 59-76 (1997)
[28] Huang, J.; Nie, F.; Huang, H., A new simplex sparse learning model to measure data similarity for clustering, (Twenty-Fourth International Joint Conference on Artificial Intelligence (2015))
[29] Tomancak, P.; Beaton, A.; Weiszmann, R.; Kwan, E.; Shu, S.; Lewis, S. E.; Richards, S.; Ashburner, M.; Hartenstein, V.; Celniker, S. E., Systematic determination of patterns of gene expression during drosophila embryogenesis, Genome Biol., 3, 12, 1-14 (2002)
[30] Nie, F.; Wang, X.; Huang, H., Clustering and Projected Clustering with Adaptive Neighbors, 977-986 (2014), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA
[31] Nie, F.; Wang, X.; Jordan, M.; Huang, H., The constrained Laplacian rank algorithm for graph-based clustering, Proc. AAAI Conf. Artif. Intell., 30 (2016)
[32] Qi, Y.-F.; Shao, Y.-H.; Li, C.-N.; Guo, Y.-R., Locally finite distance clustering with discriminative information, Inf. Sci., 623, 607-632 (2023) · Zbl 07838267
[33] De Martino, G.; Pio, G.; Ceci, M., Multi-view overlapping clustering for the identification of the subject matter of legal judgments, Inf. Sci., 638, Article 118956 pp. (2023)
[34] Demšar, J., Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1-30 (2006) · Zbl 1222.68184
[35] Benavoli, A.; Corani, G.; Demšar, J.; Zaffalon, M., Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis, J. Mach. Learn. Res., 18, 1, 2653-2688 (2017) · Zbl 1440.62237
[36] Li, C.; Che, H.; Leung, M.-F.; Liu, C.; Yan, Z., Robust multi-view non-negative matrix factorization with adaptive graph and diversity constraints, Inf. Sci., 634, 587-607 (2023) · Zbl 07832124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.