×

Optimizing thermal efficiencies of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. (English) Zbl 1516.76004

MSC:

76A05 Non-Newtonian fluids
76M30 Variational methods applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
80M50 Optimization problems in thermodynamics and heat transfer

References:

[1] R. K. Shah, A. L. London, Laminar Flow Forced Convection in Ducts, Academic Press, New York, U.S.A., (1978), 196-207. https://doi.org/10.1016/C2013-0-06152-X
[2] V, Convective diffusion with homogeneous and heterogeneous reaction in a tube, J. Phys. Chem., 84, 214-219 (1980) · doi:10.1021/j100439a018
[3] E, Conjugated Graetz problems. I: General formalism and a class of solid-fluid problems, Chem. Eng. Sci., 36, 1381-1391 (1981) · doi:10.1016/0009-2509(81)80172-8
[4] X, The Conjugated Greatz problem with axial conduction, Trans. ASME, 118, 482-485 (1996) · doi:10.1115/1.2825871
[5] D, Mathematical modeling of multiple-effect evaporators and energy economy, Energy, 32, 1536-1542 (2007) · doi:10.1016/j.energy.2006.09.002
[6] J, Separation in condensers as a way to improve efficiency, Int. J. Refrig., 79, 1-9 (2017) · doi:10.1016/j.ijrefrig.2017.03.017
[7] F, Extensions of the simultaneous design of gas-phase adiabatic tubular reactor systems with gas recycle, Ind. Eng. Chem. Res., 40, 635-647 (2001) · doi:10.1021/ie000603j
[8] C, Effect of recycled polypropylene on polypropylene/high-density polyethylene blends, J. Appl. Polym. Sci., 80, 1305-1311 (2001) · doi:10.1002/app.1217
[9] M, An exact solution of extended Graetz problem with axial heat conduction, Int. J. Heat Mass Transfer, 32, 1709-1717 (1989) · doi:10.1016/0017-9310(89)90053-7
[10] C, Determination of the power law exponent from magnetic resonance imaging (MRI) flow data, Chem. Eng. Technol., 25, 873-877 (2002) · doi:10.1002/1521-4125(20020910)25:9<873::AID-CEAT873>3.0.CO;2-T
[11] R, Steady forced convection heat transfer from a heated circular cylinder to power-law fluids, Int. J. Heat Mass Transfer, 50, 977-990 (2007) · Zbl 1124.80308 · doi:10.1016/j.ijheatmasstransfer.2006.08.008
[12] A, Non-Newtonian heat transfer on a plate heat exchanger with generalized configurations, Chem. Eng. Technol., 32, 21-26 (2007) · doi:10.1002/ceat.200600294
[13] A, Direct-forcing immersed boundary - non-Newtonian lattice Boltzmann method for transient non-isothermal sedimentation, J. Aerosol Sci., 104, 106-122 (2017) · doi:10.1016/j.jaerosci.2016.09.002
[14] A, A non-Newtonian direct numeri-cal study for stationary and moving objects with various shapes: An immersed boundary - Lattice Boltzmann approach, J. Aerosol Sci., 93, 45-62 (2016) · doi:10.1016/j.jaerosci.2015.11.006
[15] A, Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal la-ttice Boltzmann method, Phys. Rev. E, 89, 053312 (2014) · doi:10.1103/PhysRevE.89.053312
[16] A, Mesoscopic simulation of forced convective heat transfer of Carreau-Yasuda fluid flow over an inclined square: Temperature-dependent viscosity, J. Appl. Comput. Mech., 6, 307-319 (2020) · doi:10.22055/JACM.2019.29503.1605
[17] S, Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method, Comput. Fluids, 176, 51-67 (2018) · Zbl 1410.76013 · doi:10.1016/j.compfluid.2018.09.012
[18] J, Lattice Boltzmann simulation of power-law fluid flow in the mixing section of a single-screw extruder, Chem. Eng. Sci., 64, 52-58 (2009) · doi:10.1016/j.ces.2008.09.016
[19] C, Lattice Boltzmann modeling for multiphase viscoplastic fluid flow, J. Non-Newtonian Fluid Mech., 234, 118-128 (2016) · doi:10.1016/j.jnnfm.2016.05.003
[20] C, Analytical and experimental studies of power-law fluids in double-pass heat exchangers for improved device performance under uniform heat flu-xes, Int. J. Heat Mass Transfer, 61, 464-474 (2013) · doi:10.1016/j.ijheatmasstransfer.2013.02.007
[21] S, Sedimentation of elliptical particles using Immersed Boundary-Lattice Boltzmann Method: A complementary repulsive force model, J. Mol. Liq., 262, 180-193 (2018) · doi:10.1016/j.molliq.2018.04.075
[22] S, Immersed boundary-thermal lattice Boltzmann method for the moving simulation of non-isothermal elliptical particles, J. Therm. Anal. Calorim., 138, 4003-4017 (2019) · doi:10.1007/s10973-019-08329-y
[23] A, Thermal flux simulations by lattice Boltzmann method; investigation of high Richardson number cross flows over tandem squa-re cylinders, Int. J. Heat Mass Transfer, 86, 563-580 (2015) · doi:10.1016/j.ijheatmasstransfer.2015.03.011
[24] A, Harmonic oscillations of laminae in non-Newtonian fluids: a lattice Boltzmann-immersed boundary approach, Adv. Water Resour., 73, 97-107 (2014) · doi:10.1016/j.advwatres.2014.07.004
[25] E, Non-Newtonian flow (through porous media): A lattice-Boltzmann method, Geophys. Res. Lett., 20, 679-682 (1993) · doi:10.1029/93GL00473
[26] A, Non-Newtonian particulate flow simulation: Adirect-forcing immersed boundary-lattice Boltzmann approach, Physica A, 447, 1-20 (2016) · Zbl 1400.76010 · doi:10.1016/j.physa.2015.11.032
[27] C, Cooling performance of MEPCM suspensions for heat dissipation intensification in a minichannel heat sink, Int. J. Heat Mass Transfer, 115, 43-49 (2017) · doi:10.1016/j.ijheatmasstransfer.2017.08.019
[28] C, Efficacy of divergent minichannels on cooling performance of heat sinks with water-based MEPCM suspensions, Int. J. Therm. Sci., 130, 333-346 (2018) · doi:10.1016/j.ijthermalsci.2018.04.035
[29] H, Numerical investigation of microchannel heat sink with MEPCM suspension with different types of PCM, Al-Qadisiyah J. Eng. Sci., 11, 115-133 (2018) · doi:10.30772/qjes.v11i1.524
[30] A, Preparation, characterization and thermal energy storage properties of micro/nano encapsulated phase change material with acrylic-based polymer, Polym. Sci., Ser. B, 60, 58-68 (2018) · doi:10.1134/S1560090418010128
[31] E, Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry, Trends Food Sci. Technol., 91, 116-128 (2019) · doi:10.1016/j.tifs.2019.07.003
[32] M, Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam, Int. J. Heat Mass Transfer, 146, 118832-118849 (2020) · doi:10.1016/j.ijheatmasstransfer.2019.118832
[33] M, Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique, Appl. Math. Model., 77, 1936-1953 (2020) · Zbl 1481.74600 · doi:10.1016/j.apm.2019.09.015
[34] C, Forced convection heat transfer of nano-encapsulated phase change material (NEPCM) suspension in a mini-channel heat sink, Int. J. Heat Mass Transfer, 155, 119858-119870 (2020) · doi:10.1016/j.ijheatmasstransfer.2020.119858
[35] S, Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus, J. Energy Storage, 28, 101236-101273 (2020) · doi:10.1016/j.est.2020.101236
[36] J, Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study, Numer. Heat Transfer, Part A, 72, 600-627 (2017) · doi:10.1080/10407782.2017.1394134
[37] A, The comparative analysis on using the NEPCM ma- terials and nanofluids for microchannel cooling solutions, Int. Commun. Heat Mass Transfer, 79, 39-45 (2016) · doi:10.1016/j.icheatmasstransfer.2016.10.007
[38] A, Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension, Int. J. Mech. Sci., 166, 105243 (2020) · doi:10.1016/j.ijmecsci.2019.105243
[39] M, Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials, J. Mol. Liq., 293, 111432 (2019) · doi:10.1016/j.molliq.2019.111432
[40] V, Thermodynamic optimization of tree shaped flow geometries with constant channel wall temperature, Int. J. Heat Mass Transfer, 49, 4839-4849 (2006) · Zbl 1115.80304 · doi:10.1016/j.ijheatmasstransfer.2006.05.024
[41] B, The extended Graetz problem with piecewise constant wall temperature for pipe and channel flows, Int. J. Heat Mass Transfer, 47, 5303-5312 (2004) · Zbl 1098.76551 · doi:10.1016/j.ijheatmasstransfer.2004.06.027
[42] A, Low Reynolds number mixed convection in vertical tubes with uniform wall heat flux, Int. J. Heat Mass Transfer, 46, 4823-4833 (2003) · Zbl 1042.76552 · doi:10.1016/S0017-9310(03)00323-5
[43] O, Experimental investigation on natural convection in horizontal channels with the upper wall at uniform heat flux, Int. J. Heat Mass Transfer, 50, 1075-1086 (2007) · Zbl 1124.80346 · doi:10.1016/j.ijheatmasstransfer.2006.07.038
[44] C, Heat transfer in a round tube with sinusoidal wall heat flux distribution, AIChE J., 11, 690-695 (1965) · doi:10.1002/aic.690110423
[45] A, Effects of viscous dissipation on laminar forced convection with axially periodic wall heat flux, Heat Mass Transfer, 35, 9-16 (1999) · doi:10.1007/s002310050292
[46] D, Developing mixed convection flow in a horizontal tube under circumferentially non-uniform heating, Int. J. Heat Mass Transfer, 45, 1899-1913 (1994) · Zbl 0925.76585 · doi:10.1016/0017-9310(94)90330-1
[47] C, Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes, Math. Biosci. Eng., 18, 5592-5613 (2021) · Zbl 1502.80005 · doi:10.3934/mbe.2021282
[48] R, The flow of power-law non-Newtonian fluids in concentric annuli, Ind. Eng. Chem. Fundam., 18, 33-35 (1979) · doi:10.1021/i160069a008
[49] D, Direct-contact heat transfer immiscible fluid layers in laminar flow, AIChE J., 18, 94-101 (1972) · doi:10.1002/aic.690180118
[50] E, The solution of conjugated multiphase heat and mass transfer problems, Chem. Eng. J., 34, 775-787 (1979) · doi:10.1016/0009-2509(79)85133-7
[51] A, Laminar forced convection with sinusoidal wall heat flux distri-bution: axially periodic regime, Heat Mass Transfer, 31, 41-48 (1995) · doi:10.1007/BF02537420
[52] J. O. Wilkes, Fluid mechanics for chemical engineers, Prentice-Hall PTR, New Jersey, USA, 1999.
[53] J. R. Welty, C. E. Wicks, R. E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley & Sons, New York, USA, 1984.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.