×

A hardware-friendly arithmetic method and efficient implementations for designing digital fuzzy adders. (English) Zbl 1238.94042

Summary: A new hardware-friendly mathematical method for realizing low-complexity universal Adder cells as well as its efficient hardware implementations is proposed in this paper. This method can be used in binary logic, Multiple-Valued Logic (MVL) and specifically digital fuzzy systems. The proposed mathematical method can be implemented in both voltage and current modes. The voltage-mode hardware implementation is very simple and is based on input capacitors and MVL or analog inverters and buffers. In addition, the current-mode hardware implementation leads to simple and efficient structures for digital fuzzy systems. Simulations are carried out for ternary logic as well as for digital fuzzy logic with high precision by using 180 nm standard CMOS technology and at 1.8 V supply voltage. Simulation results demonstrate that the proposed designs have excellent functionality and are very suitable for implementing MVL and fuzzy arithmetic circuits.

MSC:

94C10 Switching theory, application of Boolean algebra; Boolean functions (MSC2010)
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
Full Text: DOI

References:

[1] Hurst, S. L., Multiple-Valued Logic—its status and its future, IEEE Trans. Comput., 33, 12, 1160-1179 (1984)
[2] E. Dubrova, Multiple-Valued Logic in VLSI: challenges and opportunities, in: Proceedings of NORCHIP Conference, Oslo, Norway, November 1999, pp. 340-350.; E. Dubrova, Multiple-Valued Logic in VLSI: challenges and opportunities, in: Proceedings of NORCHIP Conference, Oslo, Norway, November 1999, pp. 340-350.
[3] Ozawa, K.; Niimura, T.; Nakashima, T., Fuzzy time-series model of electric power consumption, (Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, vol. 2 (May 1999)), 1195-1198
[4] Yao, Y.-Q.; Mi, J.-S.; Li, Z.-J., Attribute reduction based on generalized fuzzy evidence theory in fuzzy decision systems, Fuzzy Sets Syst., 170, 1, 64-75 (2011) · Zbl 1214.68458
[5] Vranesic, Z. G.; Hamacher, V. C., Ternary logic in parallel multipliers, Comput. J., 15, 3, 254-258 (1972) · Zbl 0241.94039
[6] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353 (1965) · Zbl 0139.24606
[7] L.T. Koczy, R. Lovassy, Fuzzy flip-flops and neural nets? in: Proceedings of the IEEE International Conference on Fuzzy Systems, London, UK, July 2007, pp. 1-6.; L.T. Koczy, R. Lovassy, Fuzzy flip-flops and neural nets? in: Proceedings of the IEEE International Conference on Fuzzy Systems, London, UK, July 2007, pp. 1-6.
[8] Gregori, V.; Morillas, S.; Sapena, A., Examples of fuzzy metrics and applications, Fuzzy Sets Syst., 170, 1, 95-111 (2011) · Zbl 1210.94016
[9] Stachowicz, M. S.; Beall, L., Fuzzy Logic (2003), Wolfram Research Inc.
[10] G. Wang, C.L. Wen, A new fuzzy arithmetic for discrete fuzzy numbers, in: Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, vol. 1, August 2007, pp. 52-56.; G. Wang, C.L. Wen, A new fuzzy arithmetic for discrete fuzzy numbers, in: Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, vol. 1, August 2007, pp. 52-56.
[11] Gabrielli, A.; Gandolfi, E., A fast digital fuzzy processor, IEEE Micro, 19, 1, 61-79 (1999)
[12] Patyra, M. J.; Grantner, J. L.; Koster, K., Digital fuzzy logic controller: design and implementation, IEEE Trans. Fuzzy Syst., 4, 4, 439-459 (1996)
[13] J.Y. Han, S. Singh, Fast digital fuzzy operation units using comparison look-ahead, in: Proceedings of the 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, August 1990, pp. 870-873.; J.Y. Han, S. Singh, Fast digital fuzzy operation units using comparison look-ahead, in: Proceedings of the 33rd Midwest Symposium on Circuits and Systems, Calgary, Canada, vol. 2, August 1990, pp. 870-873.
[14] Peyravi, H.; Khoei, A.; Hadidi, K., Design of an analog CMOS fuzzy logic controller chip, Fuzzy Sets Syst., 123, 2, 245-260 (2002) · Zbl 1008.68578
[15] Temel, T.; Morgul, A., Implementation of multi-valued logic, simultaneous literal operations with full CMOS current-mode threshold circuits, IEE Electron. Lett., 38, 4, 160-161 (2002)
[16] Ibrahim, A. M., Fuzzy Logic for Embedded Systems Applications (2004), Elsevier
[17] Wang, W.-Z.; Jin, D.-M., Neuro-fuzzy system with high-speed low-power analog blocks, Fuzzy Sets Syst., 157, 22, 2974-2982 (2006)
[18] Ozawa, K.; Hirota, K., A VLSI design of fuzzy register, Inf. Sci., 71, 1-2, 203-221 (1993) · Zbl 0775.94137
[19] Ozawa, K.; Hirota, K.; Koczy, L. T.; Omori, K., Algebraic fuzzy flip-flop circuits, Fuzzy Sets Syst., 39, 2, 215-226 (1991)
[20] Hirota, K.; Pedrycz, W., Designing sequential systems with fuzzy J-K flip-flops, Fuzzy Sets Syst., 39, 3, 261-278 (1991) · Zbl 0716.94018
[21] Gobi, A. F.; Pedrycz, W., The potential of fuzzy neural networks in the realization of approximate reasoning engines, Fuzzy Sets Syst., 157, 22, 2954-2973 (2006) · Zbl 1107.68440
[22] Navi, K.; Moaiyeri, M. H.; Faghih Mirzaee, R.; Hashemipour, O.; Mazloom Nezhad, B., Two new low-power full adders based on majority-not gates, Microelectron. J., 40, 1, 126-130 (2009)
[23] Goel, S.; Kumar, A.; Bayoumi, M. A., Design of robust, energy-efficient Full Adders for deep-submicrometer design using hybrid-CMOS logic style, IEEE Trans. VLSI Syst., 14, 12, 1309-1321 (2006)
[24] Moaiyeri, M. H.; Faghih Mirzaee, R.; Navi, K.; Nikoubin, T.; Kavehei, O., Novel direct designs for 3-input XOR function for low-power and high-speed applications, Int. J. Electron., 97, 6, 647-662 (2010)
[25] Navi, K.; Faghih Mirzaee, R.; Moaiyeri, M. H.; Mazloom Nezhad, B.; Hashemipour, O.; Shams, K., Ultra high speed Full Adders, IEICE, Electron. Express, 5, 18, 744-749 (2008)
[26] Navi, K.; Hossein Sajedi, H.; Faghih Mirzaee, R.; Moaiyeri, M. H.; Jalali, A.; Kavehei, O., High-speed Full Adder based on minority function and bridge style for nanoscale, Integrat. VLSI J., 44, 3, 155-162 (2011)
[27] Shams, A. M.; Darwish, T. K.; Bayoumi, M. A., Performance analysis of low-power 1-bit CMOS Full Adder cells, IEEE Trans. VLSI Syst., 10, 1, 20-29 (2002)
[28] Navi, K.; Farazkish, R.; Sayedsalehi, S.; Rahimi Azghadi, M., A new quantum-dot cellular automata full-adder, Microelectron. J., 41, 12, 820-826 (2010)
[29] K. Navi, A. Kazeminejad, D. Etiemble, Performance of CMOS current mode Full Adders, in: Proceedings of the 24th International Symposium on Multiple-Valued Logic, Boston, MA, May 1994, pp. 27-34.; K. Navi, A. Kazeminejad, D. Etiemble, Performance of CMOS current mode Full Adders, in: Proceedings of the 24th International Symposium on Multiple-Valued Logic, Boston, MA, May 1994, pp. 27-34.
[30] N. Ikoma, K. Ozawa, K. Hirota, W. Pedrycz, Fuzzy sequential circuit based on weight-added fuzzy flip-flop, in: Proceedings of the 3rd IEEE Conference on Fuzzy Systems, vol. 1, June 1994, pp. 291-296.; N. Ikoma, K. Ozawa, K. Hirota, W. Pedrycz, Fuzzy sequential circuit based on weight-added fuzzy flip-flop, in: Proceedings of the 3rd IEEE Conference on Fuzzy Systems, vol. 1, June 1994, pp. 291-296.
[31] Mouftah, H. T.; Smith, K. C., Injected voltage low-power CMOS for 3-valued logic, IEE Proc. G Electron. Circuit Syst., 129, 6, 270-272 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.