×

Diego’s theorem for nuclear implicative semilattices. (English) Zbl 1498.06007

Summary: We prove that the variety of nuclear implicative semilattices is locally finite, thus generalizing Diego’s Theorem. The key ingredients of our proof include the coloring technique and construction of universal models from modal logic. For this we develop duality theory for finite nuclear implicative semilattices, generalizing Köhler duality. We prove that our main result remains true for bounded nuclear implicative semilattices, give an alternative proof of Diego’s Theorem, and provide an explicit description of the free cyclic nuclear implicative semilattice.

MSC:

06A12 Semilattices
03B45 Modal logic (including the logic of norms)
03G10 Logical aspects of lattices and related structures
03G25 Other algebras related to logic
06D20 Heyting algebras (lattice-theoretic aspects)

References:

[1] Adámek, J.; Herrlich, H.; Strecker, G. E., Abstract and concrete categories: the joy of cats, Repr. Theory Appl. Categ., 17, 1-507 (2006) · Zbl 1113.18001
[2] Bezhanishvili, N., Lattices of Intermediate and Cylindric Modal Logics (2006), University of Amsterdam, (Ph.D. thesis)
[3] Bezhanishvili, G.; Bezhanishvili, N., An algebraic approach to canonical formulas: intuitionistic case, Rev. Symb. Log., 2, 3, 517-549 (2009) · Zbl 1183.03065
[4] Bezhanishvili, G.; Ghilardi, S., An algebraic approach to subframe logics. Intuitionistic case, Ann. Pure Appl. Logic, 147, 1-2, 84-100 (2007) · Zbl 1123.03055
[5] Bezhanishvili, G.; Grigolia, R., Locally tabular extensions of MIPC, (Advances in Modal Logic, Vol. 2. Advances in Modal Logic, Vol. 2, Uppsala, 1998, CSLI Lecture Notes, vol. 119 (2001), CSLI Publ.: CSLI Publ. Stanford, CA), 101-120 · Zbl 0993.03014
[6] Bezhanishvili, G.; Holliday, W. H., A semantic hierarchy for intuitionistic logic, Indag. Math., 30, 3, 403-469 (2019) · Zbl 1539.03032
[7] Bezhanishvili, G.; Jansana, R., Duality for Distributive and Implicative Semilattices (2008), Preprints of University of Barcelona Research Group in Non-Classical Logics, Available at http://www.ub.edu/grlnc/docs/BeJa08-m.pdf
[8] Bezhanishvili, G.; Jansana, R., Priestley style duality for distributive meet-semilattices, Studia Logica, 98, 1-2, 83-122 (2011) · Zbl 1238.03050
[9] Bezhanishvili, G.; Jansana, R., Esakia style duality for implicative semilattices, Appl. Categ. Struct., 21, 2, 181-208 (2013) · Zbl 1294.06005
[10] Bezhanishvili, G.; Morandi, P. J., Profinite Heyting algebras and profinite completions of Heyting algebras, Georgian Math. J., 16, 1, 29-47 (2009) · Zbl 1172.06004
[11] Celani, S. A., Representation of Hilbert algebras and implicative semilattices, Cent. Eur. J. Math., 1, 4, 561-572 (2003) · Zbl 1034.03056
[12] Chagrov, A.; Zakharyaschev, M., Modal Logic (1997), Oxford University Press: Oxford University Press New York · Zbl 0871.03007
[13] de Jongh, D. H.J.; Troelstra, A. S., On the connection of partially ordered sets with some pseudo-Boolean algebras, Indag. Math., 28, 317-329 (1966) · Zbl 0137.02203
[14] Diego, A., Sur les algèbres de Hilbert, Collection de Logique Mathématique, Sér. A, Fasc (1966), Gauthier-Villars: Gauthier-Villars Paris, Translated from the Spanish by Luisa Iturrioz · Zbl 0144.00105
[15] Esakia, L., Topological Kripke models, Sov. Math. Dokl., 15, 147-151 (1974) · Zbl 0296.02030
[16] Esakia, L., Heyting Algebras. Duality Theory, Trends in Logic (2019), Springer, Translated from the Russian by A. Evseev, Edited by G. Bezhanishvili and W. Holliday · Zbl 0601.06009
[17] Esakia, L.; Grigolia, R., The criterion of Brouwerian and closure algebras to be finitely generated, Polish Acad. Sci. Inst. Philos. Sociol. Bull. Sect. Logic, 6, 2, 46-52 (1977) · Zbl 0407.03048
[18] Fairtlough, M.; Mendler, M., Propositional lax logic, Inform. Comput., 137, 1, 1-33 (1997) · Zbl 0889.03015
[19] Fourman, M. P.; Scott, D. S., Sheaves and logic, (Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal, Univ. Durham, Durham, 1977, Lecture Notes in Math, vol. 753 (1979), Springer: Springer Berlin), 302-401 · Zbl 0415.03053
[20] Ghilardi, S., Irreducible models and definable embeddings, (Logic Colloquium ’92. Logic Colloquium ’92, Veszprém, 1992, Stud. Logic Lang. Inform. (1995), CSLI Publ.: CSLI Publ. Stanford, CA), 95-113 · Zbl 0846.03033
[21] Goldblatt, R., Grothendieck topology as geometric modality, Z. Math. Logik Grundlag. Math., 27, 6, 495-529 (1981) · Zbl 0474.03018
[22] Johnstone, P. T., Stone Spaces (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0499.54001
[23] Köhler, P., Brouwerian semilattices, Trans. Amer. Math. Soc., 268, 1, 103-126 (1981) · Zbl 0473.06003
[24] Lawvere, F. W., Introduction, (Toposes, Algebraic Geometry and Logic Conf. Toposes, Algebraic Geometry and Logic Conf, Halifax, N.S. 1971, Lecture Notes in Math, vol. 274 (1972), Dalhousie Univ), 1-12 · Zbl 0249.18015
[25] McKay, C., The decidability of certain intermediate propositional logics, J. Symb. Logic, 33, 258-264 (1968) · Zbl 0175.27103
[26] Mendler, M., Constrained proofs: A logic for dealing with behavioural constraints in formal hardware verification, (Jones, Geraint; Sheeran, Mary, Designing Correct Circuits (London) (1991), Springer London), 1-28
[27] Picado, J.; Pultr, A., Frames and Locales: Topology Without Points (2012), Springer Science & Business Media · Zbl 1231.06018
[28] Tierney, M., Forcing topologies and classifying topoi, (Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg) (1976)), 211-219 · Zbl 0356.18012
[29] Vrancken-Mawet, L., Dualité pour les demi-lattis de Brouwer, Bull. Soc. Roy. Sci. Liège, 55, 2, 346-352 (1986) · Zbl 0594.06005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.