×

On well-posedness of quantum fluid systems in the class of dissipative solutions. (English) Zbl 1529.35326

Summary: The main objects of the present work are the quantum Navier-Stokes and quantum Euler systems; for the first one, in particular, we will consider constant viscosity coefficients. We deal with the concept of dissipative solutions, for which we will first prove the weak-strong uniqueness principle, and afterward, we will show the global existence for any finite energy initial data. Finally, we will prove that both systems admit a semiflow selection in the class of dissipative solutions.

MSC:

35Q30 Navier-Stokes equations
35Q31 Euler equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
82D50 Statistical mechanics of superfluids
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
82D37 Statistical mechanics of semiconductors
35D30 Weak solutions to PDEs
35G35 Systems of linear higher-order PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
81V70 Many-body theory; quantum Hall effect
81Q65 Alternative quantum mechanics (including hidden variables, etc.)
81P15 Quantum measurement theory, state operations, state preparations
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] Abbatiello, A., Feireisl, E., and Novotný, A., Generalized solutions to mathematical models of compressible viscous fluids, Discrete Contin. Dyn. Syst., 41 (2021), pp. 1-28. · Zbl 1460.35274
[2] Antonelli, P. and Marcati, P., On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), pp. 657-686. · Zbl 1177.82127
[3] Antonelli, P. and Spirito, S., Global existence of finite energy weak solutions of quantum Navier-Stokes equations, Arch. Ration. Mech. Anal., 225 (2017), pp. 1161-1199. · Zbl 1375.35306
[4] Antonelli, P. and Spirito, S., On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), pp. 110-124. · Zbl 1428.35342
[5] Antonelli, P., Cianfarani, C. G., Lattanzio, C., and Spirito, S., Relaxation limit from the quantum Navier-Stokes equations to the quantum drift-diffusion equation, J. Nonlinear Sci., 31(2021). · Zbl 1479.35598
[6] Audiard, C. and Haspot, B., Global well-posedness of the Euler Korteweg system for small irrotational data, Comm. Math. Phys., 315 (2017), pp. 201-247. · Zbl 1369.35047
[7] Basarić, D., Semiflow selection for the compressible Navier-Stokes system, J. Evol. Equ., 21 (2021), pp. 277-295. · Zbl 1467.35235
[8] Basarić, D., Semiflow selection to models of general compressible viscous fluids, J. Math. Fluid Mech., 23 (2021), p. 22. · Zbl 1455.76158
[9] Breit, D., Feireisl, E., and Hofmanová, M., Markov selection for the stochastic compressible Navier-Stokes system, Ann. Appl. Probab., 30 (2020), pp. 2547-2572. · Zbl 1477.35118
[10] Breit, D., Feireisl, E., and Hofmanová, M., Solution semiflow to the isentropic Euler system, Arch. Ration. Mech. Anal., 235 (2020), pp. 167-194. · Zbl 1441.35164
[11] Bresch, D., Gisclon, M., and Lacroix-Violet, I., On Navier-Stokes-Korteweg and Euler-Korteweg systems, Arch. Ration. Mech. Anal., 223 (2019), pp. 975-1025. · Zbl 1433.35217
[12] Brull, S. and Méhats, F., Derivation of viscous correction terms for the isothermal quantum Euler model, Z. Angew. Math. Mech., 90 (2010), pp. 219-230. · Zbl 1355.82018
[13] Caggio, M. and Donatelli, D., High Mach number limit for Korteweg fluids with density dependent viscosity, J. Differential Equations, 277 (2021), pp. 1-37. · Zbl 1456.76110
[14] Cardona, J. E. and Kapitanski, L., Semiflow selection and Markov selection theorems, Topol. Methods Nonlinear Anal., 56 (2020), pp. 197-227. · Zbl 1477.34086
[15] Chang, T., Jin, B. J., and Novotný, A., Compressible Navier-Stokes system with inflow-outflow boundary data, SIAM J. Math. Anal., 51(2019), pp. 1238-1278. · Zbl 1411.76149
[16] Cianfarani, C. G. and Lattanzio, C., High friction limit for Euler-Korteweg and Navier-Stokes-Korteweg models via relative entropy approach, J. Differential Equations, 269 (2020), pp. 10495-10526. · Zbl 1451.35104
[17] Dafermos, C. M., The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70 (1979), pp. 167-179. · Zbl 0448.73004
[18] Debiec, T., Gwiazda, P., Świerczewska-Gwiazda, A., and Tzavaras, A., Conservation of energy for the Euler-Korteweg equations, Calc. Var. Partial Differential Equations, 57 (2018). · Zbl 1442.76053
[19] Donatelli, D., Feireisl, E., and Marcati, P., Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Comm. Partial Differential Equations, 40 (2015), pp. 1314-1335. · Zbl 1326.35253
[20] Donatelli, D. and Marcati, P., Quasi-neutral limit, dispersion, and oscillations for Korteweg-type fluids, SIAM J. Math. Anal., 47 (2015), pp. 2265-2282. · Zbl 1320.35277
[21] Donatelli, D. and Marcati, P., Low Mach number limit for the quantum hydrodynamics system, Res. Math. Sci., 3 (2016), p. 13. · Zbl 1344.35093
[22] Dong, J., A note on barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. Real World Appl., 73 (2010), pp. 854-856. · Zbl 1193.35128
[23] Feireisl, E., Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2003. · Zbl 1080.76001
[24] Feireisl, E., On weak-strong uniqueness for the compressible Navier-Stokes system with non-monotone pressure law, Comm. Partial Differential Equations, 44 (2019), pp. 271-278. · Zbl 1416.35184
[25] Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., and Wiedemann, E., Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differential Equations, 55(2016), pp. 55-141. · Zbl 1360.35143
[26] Feireisl, E., Jin, B. J., and Novotný, A., Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Dyn., 14 (2012), pp. 717-730. · Zbl 1256.35054
[27] Feireisl, E. and Lukáčová-Medvid’ová, M., Convergence of a mixed finite element-finite volume scheme for the isentropic Navier-Stokes system via dissipative measure-valued solutions, Found. Comput. Math., 18 (2018), pp. 703-730. · Zbl 1402.65096
[28] Feireisl, E. and Novotný, A., Weak-strong uniqueness property for models of compressible viscous fluids near vacuum, Nonlinearity, 34 (2021), pp. 6627-6650. · Zbl 1479.35609
[29] Ferry, D. K. and Zhou, J.-R., Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling, Phys. Rev. B, 48 (1993), pp. 7944-7950.
[30] Flandoli, F. and Romito, M., Markov selections for the 3D stochastics Navier-Stokes equations, Probab. Theory Related Fields, 140 (2008), pp. 407-458. · Zbl 1133.76016
[31] Germain, P., Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), pp. 137-146. · Zbl 1270.35342
[32] Giesselmann, J., Lattanzio, C., and Tzavaras, A. E., Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Ration. Mech. Anal., 223 (2017), pp. 1427-1484. · Zbl 1359.35140
[33] Gisclon, M. and Lacroix-Violet, I., About the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. Theory Methods Appl., 128 (2015), pp. 106-121. · Zbl 1336.35290
[34] Gwiazda, P., Świerczewska-Gwiazda, A., and Wiedemann, E., Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28 (2015), pp. 3873-3890. · Zbl 1336.35291
[35] Jiang, F., A remark on weak solutions to the barotropic compressible quantum Navier-Stokes equations, Nonlinear Anal. Real World Appl., 12 (2011), pp. 1733-1735. · Zbl 1216.35089
[36] Jüngel, A. and Li, H. L., Quantum Euler-Poisson systems: Global existence and exponential decay, Quart. Appl. Math., 62 (2004), pp. 569-600. · Zbl 1069.35012
[37] Jüngel, A., Global weak solutions to compressible Navier-Stokes equations for quantum fluids, SIAM J. Math. Anal., 42 (2010), pp. 1025-1045. · Zbl 1228.35083
[38] Krylov, N. V., The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), pp. 691-708. · Zbl 0295.60057
[39] Lacroix-Violet, I. and Vasseur, A., Global weak solutions to the compressible quantum Navier-Stokes equations and its semi-classical limit, J. Math. Pures Appl., 114 (2018), pp. 191-210. · Zbl 1392.35228
[40] Li, H. L. and Marcati, P., Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors, Comm. Math. Phys., 245 (2004), pp. 215-247. · Zbl 1075.82019
[41] Li, J. and Xin, Z. P., Global Existence of Weak Solutions to the Barotropic Compressible Navier-Stokes Flows with Degenerate Viscosities, preprint, arXiv:1504.06826, 2015.
[42] Loffredo, M. I. and Morato, L. M., On the creation of quantized vortex lines in rotating He II, Nuovo Cim. B, 108 (1993), pp. 205-216.
[43] Prodi, G., Un teorema di unicitá per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), pp. 173-182. · Zbl 0148.08202
[44] Slavchov, R. and Tsekov, R., Quantum hydrodynamics of electron gases, J. Chem. Phys., 132 (2010), 084505.
[45] Stroock, D. W. and Varadhan, S. R. S., Multidimensional diffusion processes, in Classics in Mathematics, Springer-Verlag, Berlin, 2006. · Zbl 1103.60005
[46] Tang, T. and Gao, H., On the compressible Navier-Stokes-Korteweg equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), pp. 2745-2766. · Zbl 1351.35150
[47] Tang, T., Non-existence of classical solutions with finite energy to the Cauchy problem of the Navier-Stokes-Korteweg equations, J. Math. Phys., 63 (2022), p. 13. · Zbl 1507.35148
[48] Vasseur, A. and Yu, C., Global weak solutions to compressible Navier-Stokes equations with damping, SIAM J. Math. Anal., 48 (2016), pp. 1489-1511. · Zbl 1343.35189
[49] Wiedemann, E., Weak-strong uniqueness in fluid dynamics, Partial Differential Equations Fluid Dyn., 452 (2018), pp. 289-326. · Zbl 1408.35158
[50] Wyatt, R., Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Springer, New York, 2005. · Zbl 1107.81003
[51] Zaremba, E. and Tso, H. C., Thomas-Fermi-Dirac-von Weizsäcker hydrodynamics in parabolic wells, Phys. Rev. B, 49 (1994), p. 8147.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.