×

Solution semiflow to the isentropic Euler system. (English) Zbl 1441.35164

The authors consider the compressible isentropic Euler equations in \(\mathbb R^N\) with periodic boundary conditions (so the domain is the flat torus) and focus on defining and establishing well-posedness of the system. Defining the semiflow concept as a mapping from the initial state to any state in a distributional sense, the authors prove it to possess the semigroup (Markovian) property. Such solution coincides with the strong solution if one exists and, also, maximizes energy dissipation.

MSC:

35L65 Hyperbolic conservation laws
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35D30 Weak solutions to PDEs
35Q31 Euler equations

References:

[1] Alibert, Jj; Bouchitté, G., Non-uniform integrability and generalized Young measures, J. Convex Anal., 4, 1, 129-147 (1997) · Zbl 0981.49012
[2] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (2000), New York: The Clarendon Press, New York · Zbl 0957.49001
[3] Ball, J.M.: A version of the fundamental theorem for Young measures. In Lecture Notes in Physics, vol. 344. Springer, pp. 207-215, 1989 · Zbl 0991.49500
[4] Breit, D., Feireisl, E., Hofmanová, M.: Markov selection to the stochastic compressible Navier-Stokes system. arXiv:1809.07265 · Zbl 1390.60226
[5] Brenier, Y.; De Lellis, C.; Székelyhidi, L. Jr, Weak-strong uniqueness for measure-valued solutions, Commun. Math. Phys., 305, 2, 351-361 (2011) · Zbl 1219.35182 · doi:10.1007/s00220-011-1267-0
[6] Buckmaster, T.; Vicol, V., Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math., 189, 1, 101-144 (2019) · Zbl 1412.35215 · doi:10.4007/annals.2019.189.1.3
[7] Cardona, J.E., Kapitanski, L.: Semiflow selection and Markov selection theorems. arxiv preprint No. 1707.04778v1, 2017 · Zbl 1477.34086
[8] Chen, G-Q; Perepelitsa, M., Vanishing viscosity solutions of the compressible Euler equations with spherical symmetry and large initial data, Commun. Math. Phys., 338, 2, 771-800 (2015) · Zbl 1323.35136 · doi:10.1007/s00220-015-2376-y
[9] Chiodaroli, E., A counterexample to well-posedness of entropy solutions to the compressible Euler system, J. Hyperbolic Differ. Equ., 11, 3, 493-519 (2014) · Zbl 1304.35515 · doi:10.1142/S0219891614500143
[10] Chiodaroli, E.; De Lellis, C.; Kreml, O., Global ill-posedness of the isentropic system of gas dynamics, Commun. Pure Appl. Math., 68, 7, 1157-1190 (2015) · Zbl 1323.35137 · doi:10.1002/cpa.21537
[11] Chiodaroli, E.; Kreml, O., On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal., 214, 3, 1019-1049 (2014) · Zbl 1304.35516 · doi:10.1007/s00205-014-0771-8
[12] Chiodaroli, E., Kreml, O., Mácha, V., Schwarzacher, S.: Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. 2019. arxive preprint No. 1812.09917v1 · Zbl 1462.35263
[13] Dafermos, Cm, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differ. Equ., 14, 202-212 (1973) · Zbl 0262.35038 · doi:10.1016/0022-0396(73)90043-0
[14] Dafermos, Cm, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70, 167-179 (1979) · Zbl 0448.73004 · doi:10.1007/BF00250353
[15] De Lellis, C.; Székelyhidi, L. Jr, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195, 1, 225-260 (2010) · Zbl 1192.35138 · doi:10.1007/s00205-008-0201-x
[16] Diperna, Rj, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91, 1-30 (1983) · Zbl 0533.76071 · doi:10.1007/BF01206047
[17] Feireisl, E.: Weak solutions to problems involving inviscid fluids. Mathematical Fluid Dynamics, pp. 377-399. Present and Future, volume 183 of Springer Proceedings in Mathematics and Statistics. Springer, New York 2016 · Zbl 1371.35204
[18] Feireisl, E.; Gwiazda, P.; Świerczewska-Gwiazda, A.; Wiedemann, E., Dissipative measure-valued solutions to the compressible Navier-Stokes system, Calc. Var. Partial Differ. Equ., 55, 6, 55-141 (2016) · Zbl 1360.35143 · doi:10.1007/s00526-016-1089-1
[19] Flandoli, F.; Romito, M., Markov selections for the 3D stochastic Navier-Stokes equations, Probab. Theory Rel. Fields, 140, 3-4, 407-458 (2008) · Zbl 1133.76016
[20] Gwiazda, P.; Świerczewska-Gwiazda, A.; Wiedemann, E., Weak-strong uniqueness for measure-valued solutions of some compressible fluid models, Nonlinearity, 28, 11, 3873-3890 (2015) · Zbl 1336.35291 · doi:10.1088/0951-7715/28/11/3873
[21] Kröner, D.; Zajaczkowski, Wm, Measure-valued solutions of the Euler equations for ideal compressible polytropic fluids, Math. Methods Appl. Sci., 19, 3, 235-252 (1996) · Zbl 0839.76072 · doi:10.1002/(SICI)1099-1476(199602)19:3<235::AID-MMA772>3.0.CO;2-4
[22] Krylov, Nv, The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat., 37, 691-708 (1973) · Zbl 0295.60057
[23] Lions, P-L; Perthame, B.; Souganidis, E., Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Commun. Pure Appl. Math., 49, 599-638 (1996) · Zbl 0853.76077 · doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5
[24] Luo, T.; Xie, C.; Xin, Z., Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms, Adv. Math., 291, 542-583 (2016) · Zbl 1337.35114 · doi:10.1016/j.aim.2015.12.027
[25] Markfelder, S.; Klingenberg, C., The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock, Arch. Ration. Mech. Anal., 227, 3, 967-994 (2018) · Zbl 1390.35249 · doi:10.1007/s00205-017-1179-z
[26] Smoller, J., Shock waves and reaction-diffusion equations (1967), New York: Springer, New York
[27] Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Classics in Mathematics. Springer, Berlin, 2006. Reprint of the 1997 edition · Zbl 1103.60005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.