×

Weighted local estimates for fractional type operators. (English) Zbl 1301.42035

Summary: In this note we prove the estimate \(M^{\sharp}_{0,s}(Tf)(x)\leq cM_\gamma f(x)\) for general fractional type operators \(T\), where \(M^{\sharp}_{0,s}\) is the local sharp maximal function and \(M_\gamma\) the fractional maximal function, as well as a local version of this estimate. This allows us to express the local weighted control of \(Tf\) by \(M_\gamma f\). Similar estimates hold for \(T\) replaced by fractional type operators with kernels satisfying Hörmander-type conditions or integral operators with homogeneous kernels, and \(M_\gamma\) replaced by an appropriate maximal function \(M_T\). We also prove two-weight \(L^p_v\)-\(L^q_w\) estimates for the fractional type operators described above for \(1<p<q<\infty\) and a range of \(q\). The local nature of the estimates leads to results involving generalized Orlicz-Campanato and Orlicz-Morrey spaces.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B35 Function spaces arising in harmonic analysis
26A33 Fractional derivatives and integrals
31B10 Integral representations, integral operators, integral equations methods in higher dimensions

References:

[1] Adams, D.R.: A note on Riesz potentials. Duke Math J. 42, 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2] Adams, D.R.: Weighted nonlinear potential theory. Trans. Amer. Math. Soc. 297(1), 73-94 (1986) · Zbl 0656.31012 · doi:10.1090/S0002-9947-1986-0849468-4
[3] Adams, D.R., Xiao, J.: Morrey spaces in harmonic analysis. Ark. Mat. 50(2), 201-230 (2012) · Zbl 1254.31009 · doi:10.1007/s11512-010-0134-0
[4] Bernardis, A.L., Lorente, M., Riveros, M.S.: Weighted inequalities for fractional integral operators with kernels satisfying Hörmander type conditions. Math. Inequal. Appl. 14(4), 881-895 (2011) · Zbl 1245.42009
[5] Chanillo, S., Watson, D., Wheeden, R.L.: Some integral and maximal operators related to starlike sets. Studia Math. 107, 223-255 (1993) · Zbl 0809.42008
[6] Cruz-Uribe, D.: A fractional Muckenhoupt-Wheeden theorem and its consequences. Integr. Equ. Oper. Theory 76(3), 421-446 (2013) · Zbl 1275.42029 · doi:10.1007/s00020-013-2059-z
[7] Ding, Y., Lu, S.: Boundedness of homogenous fractional integrals on Lp for n/α ≤ p ≤ ∞. Nagoya Mat. J. 167, 17-33 (2002) · Zbl 1031.42015
[8] Fujii, N.: A proof of the Fefferman-Stein-Strömberg inequality for the sharp maximal function. Proc. Amer. Math. Soc. 106(2), 371-377 (1989) · Zbl 0683.42020
[9] Fujii, N.: A condition for the two-weight norm inequality for singular integral operators. Studia Math. 98(3), 175-190 (1991) · Zbl 0732.42012
[10] Fujii, N.: Strong type estimation from weak type estimates for some integral operators. Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 25-30, Int. Soc. Anal. Appl. Comput., 7, Kluwer Acad. Publ., Dordrecht (2000) · Zbl 1037.45005
[11] García-Cuerva, J., Martell, J.M.: Two-weight norm inequalities for maximal operators and fractional integrals on non-homogenous spaces. Indiana Univ. Math. J. 50(3), 1241-1280 (2001) · Zbl 1023.42012 · doi:10.1512/iumj.2001.50.2100
[12] Gogatishvili, A., Mustafayev, R.: Equivalence of norms of Riesz potential and fractional maximal function in Morrey-type spaces. Collect. Math. 63(1), 11-28 (2012) · Zbl 1258.42017 · doi:10.1007/s13348-010-0012-x
[13] Guliyev, V.S., Aliyev, S.S., Karaman, T., Shukurov, P.S.: Boundedness of sublinear operators and commutators on generalized Morrey spaces. Integr. Equ. Oper. Theory 71, 327-355 (2011). doi:10.1007/s00020-011-1904-1 · Zbl 1247.42014 · doi:10.1007/s00020-011-1904-1
[14] Guliyev, V.S., Shukurov, P.S.: Adams type result for sublinear operators generated by Riesz potentials on generalized Morrey spaces. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 32(1), Mathematics, 61-70 (2012) · Zbl 1267.42020
[15] Guliyev, V.S., Shukurov, P.S.: On the boundedness of the fractional maximal operator, Riesz potential and their commutators in generalized Morrey spaces. Oper. Theory Adv. Appl. 229, 175-199 (2013) · Zbl 1261.42015
[16] Harboure, E., Macías, R.A., Segovia, C.: Boundedness of fractional operators on Lp spaces with different weights. Trans. Amer. Math. Soc. 285, 629-647 (1984) · Zbl 0564.42010
[17] Jawerth, B., Torchinsky, A.: Local sharp maximal functions. J. Approx. Theory 43(3), 231-270 (1985) · Zbl 0565.42009 · doi:10.1016/0021-9045(85)90102-9
[18] Kurtz, D.S., Wheeden, R.L.: Results for weighted norm inequalities for multipliers. Trans. Amer. Math. Soc. 255, 343-362 (1979) · Zbl 0427.42004 · doi:10.1090/S0002-9947-1979-0542885-8
[19] Lerner, A.K.: On the John-Strömberg characterization of BMO for nondoubling measures. Real. Anal. Exch. 28(2), 649-660 (2002/2003) · Zbl 1044.42018
[20] Lerner, A.K.: A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. Lond. Math. Soc. 42(5), 843-856 (2010) · Zbl 1203.42023 · doi:10.1112/blms/bdq042
[21] Muckenhoup, B., Wheeden, R.: Weighted norm inequaliteies for fractional integrals. Trans. Amer. Math. Soc. 192, 261-274 (1974) · Zbl 0289.26010 · doi:10.1090/S0002-9947-1974-0340523-6
[22] Nakai, E.: On generalized fractional integrals. Taiwan. J. Math. 5(3), 587-602 (2001) · Zbl 0990.26007
[23] Pérez, C.: On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights. Proc. London Math. Soc. (3) 71(1), 135-157 (1995) · Zbl 0829.42019 · doi:10.1112/plms/s3-71.1.135
[24] Pérez, C.: Two weighed inequalities for potential and fractional type maximal operators. Indiana U. Math. J. 43, 1-28 (1994) · Zbl 0809.42007 · doi:10.1512/iumj.1994.43.43028
[25] Pérez, C.: Sharp Lp-weighted Sobolev inequalities. Ann. Inst. Fourier (Grenoble) 45(3), 809-824 (1995) · Zbl 0820.42008 · doi:10.5802/aif.1475
[26] Poelhuis, J., Torchinsky, A.: Medians, continuity, and vanishing oscillation. Studia Math. 213, 227-242 (2012) · Zbl 1277.42024 · doi:10.4064/sm213-3-3
[27] Poelhuis, J., Torchinsky, A.: Weighted local estimates for singular integral operators. arXiv:1308.1134v2 · Zbl 1361.42015
[28] Rakotondratsimba, Y.: Local weighted inequalities for the fractional integral operator. Kobe J. Math. 17, 153-189 (2000) · Zbl 1023.42011
[29] Riveros, M.S.: Weighted Inequalities for generalized fractional operators. Rev. Un. Mat. Argent. 49(2), 29-38 (2009) · Zbl 1281.42016
[30] Riveros, M.S., Urciuolo, M.: Weighted inequalities for fractional type operators with some homogenous kernels. Acta Math. Sin. (Engl. Ser.) 29(3), 449-460 (2013) · Zbl 1260.42011 · doi:10.1007/s10114-013-1639-9
[31] Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36, 517-556 (2012). doi:10.1007/s11118-011-9239-8 · Zbl 1242.42017 · doi:10.1007/s11118-011-9239-8
[32] Sawyer, E.: A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75(1), 1-11 (1982) · Zbl 0508.42023
[33] Sawyer, E.T., Wheeden, R.L.: Weighted inequalities for fractional integrals on Euclidean and homogenous spaces. Amer. J. Math. 144, 813-874 (1992) · Zbl 0783.42011 · doi:10.2307/2374799
[34] Shi, X.L., Torchinsky, A.: Local sharp maximal functions in spaces of homogeneous type. Sci. Sinica Ser. A 30(5), 473-480 (1987) · Zbl 0634.42020
[35] Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms duality of Hardy spaces. Indiana Univ. Math. J. 28(3), 511-544 (1979) · Zbl 0429.46016 · doi:10.1512/iumj.1979.28.28037
[36] Strömberg, J.-O., Torchinsky, A: Weighted hardy spaces. In: Lecture Notes in Mathematics, pp. 1381. Springer-Verlag, Berlin (1989) · Zbl 0676.42021
[37] Torchinsky, A.: Interpolation of operations and Orlicz classes. Studia Math. 59, 177-207 (1976/77) · Zbl 0348.46027
[38] Torchinsky, A.: Real-variable methods in harmonic analysis, Pure and Applied Mathematics, 123, Academic Press, Inc., Orlando, FL 1986, (Reprinted by Dover in 2004) · Zbl 0621.42001
[39] Trujillo-González, R.: Two-weight norm inequalities for fractional maximal operators on spaces of generalized homogenous type. Period. Math. Hungar. 44(1), 101-110 (2002) · Zbl 1012.42014 · doi:10.1023/A:1014980120114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.