×

Shape design sensitivity analysis of viscoplastic structures. (English) Zbl 0847.73040

Design sensitivity analysis of nonlinear viscoplastic structures is developed in the continuum form starting from Hamilton’s principle. Constitutive models based on internal variable theory are incorporated in response analysis. Such models are described by a set of first order nonlinear differential equations with respect to time, and some of them allow development of the yield surface. The direct variation method is employed to obtain the sensitivity of the response. Discretization of the analysis and sensitivity equations, and computer implementation aspects are discussed. The discretized equations are implemented into a computer program, and two numerical examples are solved to demonstrate the theory.

MSC:

74P99 Optimization problems in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)

Software:

ADINA
Full Text: DOI

References:

[1] Haftka, R. T.; Adelman, H. M., Recent developments in structural sensitivity analysis, Structural Optimization, 1, 137-151 (1989)
[2] Ryu, Y. S.; Haririan, M.; Wu, C. C.; Arora, J. S., Structural design sensitivity analysis of nonlinear response, Comput. & Structures, 21, 245-255 (1985) · Zbl 0589.73084
[3] Haririan, M.; Cardoso, J. E.B.; Arora, J. S., Use of ADINA for design optimization of nonlinear structures, Comput. & Structures, 26, 123-134 (1987) · Zbl 0609.73092
[4] Wu, C. C.; Arora, J. S., Design sensitivity analysis and optimization of nonlinear structural response using incremental procedure, AIAA J., 25, 8, 1118-1125 (1987) · Zbl 0622.73109
[5] Haftka, R. T.; Mróz, Z., First- and second-order sensitivity analysis of linear and nonlinear structures, AIAA J., 24, 1192-1987 (1986) · Zbl 0593.73051
[6] Choi, K. K.; Santos, J. L.T., Design sensitivity analysis of nonlinear structural systems. Part 1: General theory, Internat. J. Numer. Methods Engrg., 24, 2039-2055 (1987) · Zbl 0621.73110
[7] Cardoso, J. B.; Arora, J. S., Variational method for design sensitivity analysis in nonlinear structural mechanics, AIAA J., 26, 595-603 (1988)
[8] Dems, K.; Mróz, Z., Shape sensitivity analysis and optimal design of physically nonlinear plates, Arch. Mech., 41, 481-501 (1989) · Zbl 0724.73157
[9] Tsay, J. J.; Arora, J. S., Nonlinear structural design sensitivity for path dependent problems. Part 1: General theory, Comput. Methods Appl. Mech. Engrg., 81, 183-208 (1990) · Zbl 0724.73158
[10] Tortorelli, D. A.; Lu, S. C.Y.; Haber, R., Design sensitivity analysis for elastodynamic system, Mech. Structures Machines, 18, 77-106 (1990)
[11] Arora, J. S.; Lee, T. H.; Kumar, V., Design sensitivity analysis of nonlinear structures—III: Shape variation of viscoplastic structures, (Kamat, M. P., AIAA Series on Progress in Astronautics and Aeronautics, Structural Optimization: Status & Promise (1993), AIAA: AIAA Washington, DC) · Zbl 0847.73040
[12] Tsay, J. J.; Arora, J. S., Optimum design of nonlinear structures with path dependent response, Structural Optimization, 1, 203-214 (1989)
[13] Tsay, J. J.; Cardoso, J. E.B.; Arora, J. S., Nonlinear structural design sensitivity analysis for path dependent problems. Part 2: Analytical examples, Comput. Methods Appl. Mech. Engrg., 81, 209-228 (1990) · Zbl 0724.73159
[14] Mukherjee, S.; Chandra, A., A boundary element formulation for design sensitivities in materially nonlinear problems, Acta Mech., 78, 243-253 (1989) · Zbl 0705.73264
[15] Arora, J. S.; Lee, T. H.; Cardoso, J. B., Structural shape sensitivity analysis: Relationship between material derivative and control volume approaches, AIAA J., 30, 1638-1648 (1992) · Zbl 0761.73075
[16] Haber, R. B., A new variational approach to structural shape design sensitivity analysis, (Soares, C. A.Mota, Computer Aided Optimal Design: Structural and Mechanical Systems, NATO ASI Series, Vol. F27 (1987), Springer: Springer Berlin), 573-587
[17] Phelan, D. G.; Haber, R. B., Sensitivity analysis of linear elastic systems using domain parameterization and a mixed mutual energy principle, Comput. Methods Appl. Mech. Engrg., 77, 31-59 (1989) · Zbl 0727.73044
[18] Jao, S. Y.; Arora, J. S., Design sensitivity analysis of nonlinear structures using endochronic constitutive model, Comput. Mech., 10, 39-72 (1992) · Zbl 0756.73061
[19] Arora, J. S.; Lee, T. H., Design sensitivity analysis of nonlinear nonconservative problems, (Proc. NATO Advanced Study Institute on Optimization of Large Structural Systems (23 September-4 October 1991)), Berchtesgadan, Germany (to be published by Springer). · Zbl 0847.73040
[20] Arora, J. S.; Cardoso, J. B., A variational principle for shape design sensitivity analysis, AIAA J., 30, 538-547 (1992) · Zbl 0751.73065
[21] Poldneff, M. J.; Rai, I. S.; Arora, J. S., Design variations of nonlinear elastic structures subjected to follower forces, Comput. Methods Appl. Mech. Engrg. (1994), to appear. · Zbl 0846.73043
[22] Bathe, K. J., Finite Element Procedures in Engineering Analysis (1982), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0528.65053
[23] Casey, J., Approximate kinematical relation in plasticity, Internat. J. Solids and Structures, 21, 671-682 (1985) · Zbl 0581.73050
[24] Lee, E. H., Elastic-plastic deformation at finite strain, ASME J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[25] Lubliner, J., Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[26] Cleja-Fioiu, S.; Soós, E., Elastoviscoplastic models with relaxed configurations and internal state variables, Appl. Mech. Rev., 43, 7, 131-151 (1990)
[27] T.H. Lee, J.S. Arora and K. Rim, Design sensitivity analysis of thermoviscoplastic mechanical and structural systems, Technical Report No. ODL-91.19, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA 52242.; T.H. Lee, J.S. Arora and K. Rim, Design sensitivity analysis of thermoviscoplastic mechanical and structural systems, Technical Report No. ODL-91.19, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA 52242.
[28] Voyiadjis, G. J.; Mohammad, L. N., Theory vs. experiment for finite strain viscoplastic, Lagrangian constitutive model, Inter. J. Plasticity, 7, 329-350 (1991) · Zbl 0761.73048
[29] Kumar, V. K.; Mukherjee, S., Creep analysis of structures using a new equation of state type constitutive relation, Comput. & Structures, 6, 429-437 (1976) · Zbl 0332.73042
[30] Hart, E. W., Constitutive relations for the nonelastic deformation of metals, ASME J. Engrg. Mat. Tech., 98, 193-202 (1976)
[31] Delph, T. J., A comparative study of two state-variable constitutive theories, ASME J. Engrg. Mat. Techn., 102, 327-336 (1980)
[32] Chaboche, J. L.; Rousselier, G., On the plastic and viscoplastic constitutive equation: Part I rules developed with internal variable concept and Part II Application of internal variable concept to the 316 stainless steel, ASME J. Pressure Vessel and Technology, 105, 153-164 (1983)
[33] Chaboche, J. L., Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Internat. J. Plasticity, 5, 247-302 (1989) · Zbl 0695.73001
[34] Kumar, V.; Morjaria, M.; Mukherjee, S., Numerical integration of some stiff constitutive models of inelastic deformation, ASME J. Engrg. Mat. Techn., 102, 92-96 (1980)
[35] Arnold, S. M., Quantification of numerical stiffness for a unified viscoplastic constitutive model, ASME J. Engrg. Mat. Techn., 112, 271-276 (1990)
[36] Arora, J. S.; Cardoso, J. E.B., A design sensitivity analysis principle and its implementation into ADINA, Comput. & Structures, 32, 691-705 (1989) · Zbl 0705.73208
[37] B.N. Cassenti, Research and Development Program for the Development of Advanced Time-Temperature Dependent Constitutive Relationships, NASA CR-168191, United Technologies Research Center, East Hartford, CT.; B.N. Cassenti, Research and Development Program for the Development of Advanced Time-Temperature Dependent Constitutive Relationships, NASA CR-168191, United Technologies Research Center, East Hartford, CT.
[38] Needleman, A., On finite element formulations for large elasto-plastic deformations, Comput. & Structures, 20, 245-257 (1985)
[39] Moran, B.; Ortiz, M.; Shih, C. F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity, Internat. J. Numer. Methods Engrg., 29, 483-515 (1990) · Zbl 0724.73221
[40] Arya, V. K., Application of finite-element-based solution technologies for viscoplastic structural analysis, Comm. Appl. Numer. Methods, 7, 435-444 (1991) · Zbl 0729.73909
[41] Hughes, T. J.R.; Taylor, R. L., Unconditionally stable algorithms for quasi-static elasto/visco-plastic finite element analysis, Comput. & Structures, 8, 169-173 (1978) · Zbl 0365.73029
[42] Cordts, D.; Kollmann, F. G., An implicit time integration scheme for inelastic constitutive equations with internal state variables, Internat. J. Numer. Methods Engrg., 23, 533-554 (1986) · Zbl 0584.73108
[43] Chulya, A.; Walker, K. P., A New Uniformly Valid Asymptotic Integration Algorithm for Elasto-Plastic-Creep and Unified Viscoplastic Theories including Continuum Damages, (NASA-TM-102344, ICOMP-89-22 (1989), NASA Lewis Research Center: NASA Lewis Research Center Cleveland, Ohio)
[44] Hornberger, K.; Stamm, H., An implicit integration algorithm with a projection method for viscoplastic constitutive equations, Internat. J. Numer. Methods Engrg., 28, 2393-2421 (1989) · Zbl 0716.73030
[45] Ghosh, S.; Kikuchi, N., An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids, Comput. Methods Appl. Mech. Engrg., 86, 127-188 (1991) · Zbl 0825.73687
[46] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill London · Zbl 0435.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.