×

Fast calibrated additive quantile regression. (English) Zbl 1510.62175

Summary: We propose a novel framework for fitting additive quantile regression models, which provides well-calibrated inference about the conditional quantiles and fast automatic estimation of the smoothing parameters, for model structures as diverse as those usable with distributional generalized additive models, while maintaining equivalent numerical efficiency and stability. The proposed methods are at once statistically rigorous and computationally efficient, because they are based on the general belief updating framework of Bissiri, Holmes, and Walker to loss based inference, but compute by adapting the stable fitting methods of Wood, Pya, and Säfken. We show how the pinball loss is statistically suboptimal relative to a novel smooth generalization, which also gives access to fast estimation methods. Further, we provide a novel calibration method for efficiently selecting the “learning rate” balancing the loss with the smoothing priors during inference, thereby obtaining reliable quantile uncertainty estimates. Our work was motivated by a probabilistic electricity load forecasting application, used here to demonstrate the proposed approach. The methods described here are implemented by the qgam R package, available on the Comprehensive R Archive Network (CRAN).

MSC:

62G08 Nonparametric regression and quantile regression

References:

[1] Azzalini, A., “A Class of Distributions Which Includes the Normal Ones, Scandinavian Journal of Statistics, 12, 171-178 (1985) · Zbl 0581.62014
[2] Bissiri, P. G.; Holmes, C. C.; Walker, S. G., “A General Framework for Updating Belief Distributions, Journal of the Royal Statistical Society, Series B, 78, 1103-1130 (2016) · Zbl 1414.62039 · doi:10.1111/rssb.12158
[3] Brent, R. P., Algorithms for Minimization Without Derivatives (2013), Mineola, NY: Courier Corporation, Mineola, NY
[4] Chen, C.; Mangasarian, O. L., “Smoothing Methods for Convex Inequalities and Linear Complementarity Problems, Mathematical Programming, 71, 51-69 (1995) · Zbl 0855.90124 · doi:10.1007/BF01592244
[5] Claeskens, G.; Krivobokova, T.; Opsomer, J. D., “Asymptotic Properties of Penalized Spline Estimators, Biometrika, 96, 529-544 (2009) · Zbl 1170.62031 · doi:10.1093/biomet/asp035
[6] Fahrmeir, L.; Kneib, T.; Lang, S., “Penalized Structured Additive Regression for Space-Time Data: A Bayesian Perspective,”, Statistica Sinica, 14, 731-761 (2004) · Zbl 1073.62025 · doi:10.1002/bimj.200490310
[7] Gaillard, P.; Goude, Y.; Nedellec, R., “Additive Models and Robust Aggregation for GEFCom2014 Probabilistic Electric Load and Electricity Price Forecasting, International Journal of Forecasting, 32, 1038-1050 (2016) · doi:10.1016/j.ijforecast.2015.12.001
[8] Hastie, T.; Tibshirani, R., Generalized Additive Models (1990), Wiley Online Library · Zbl 0747.62061
[9] Hothorn, T.; Bühlmann, P.; Kneib, T.; Schmid, M.; Hofner, B., “Model-Based Boosting 2.0,”, The Journal of Machine Learning Research, 11, 2109-2113 (2010) · Zbl 1242.68002
[10] Jones, M., “On a Class of Distributions With Simple Exponential Tails, Statistica Sinica, 18, 1101-1110 (2008) · Zbl 1149.62007
[11] Jones, M.; Pewsey, A., “Sinh-Arcsinh Distributions, Biometrika, 96, 761-780 (2009) · Zbl 1183.62019 · doi:10.1093/biomet/asp053
[12] Kaplan, D. M.; Sun, Y., “Smoothed Estimating Equations for Instrumental Variables Quantile Regression, Econometric Theory, 33, 105-157 (2017) · Zbl 1441.62768 · doi:10.1017/S0266466615000407
[13] Kauermann, G.; Krivobokova, T.; Fahrmeir, L., “Some Asymptotic Results on Generalized Penalized Spline Smoothing, Journal of the Royal Statistical Society, Series B, 71, 487-503 (2009) · Zbl 1248.62055 · doi:10.1111/j.1467-9868.2008.00691.x
[14] Kim, Y.-J.; Gu, C., “Smoothing Spline Gaussian Regression: More Scalable Computation via Efficient Approximation, Journal of the Royal Statistical Society, Series B, 66, 337-356 (2004) · Zbl 1062.62067 · doi:10.1046/j.1369-7412.2003.05316.x
[15] Koenker, R., Quantile Regression, 38), (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1111.62037
[16] Koenker, R. (2013), “quantreg: Quantile Regression,” R Package Version 5. · Zbl 1432.62097
[17] Lin, C.-Y.; Bondell, H.; Zhang, H. H.; Zou, H., “Variable Selection for Non-Parametric Quantile Regression via Smoothing Spline Analysis of Variance, Stat, 2, 255-268 (2013) · Zbl 07847486 · doi:10.1002/sta4.33
[18] Lindgren, F.; Rue, H., “Bayesian Spatial Modelling With R-INLA, Journal of Statistical Software, 63, 1-25 (2015) · doi:10.18637/jss.v063.i19
[19] Martins, T. G.; Simpson, D.; Lindgren, F.; Rue, H., “Bayesian Computing With INLA: New Features, Computational Statistics & Data Analysis, 67, 68-83 (2013) · Zbl 1471.62135 · doi:10.1016/j.csda.2013.04.014
[20] Menne, M. J.; Durre, I.; Vose, R. S.; Gleason, B. E.; Houston, T. G., “An Overview of the Global Historical Climatology Network-Daily Database, Journal of Atmospheric and Oceanic Technology, 29, 897-910 (2012) · doi:10.1175/JTECH-D-11-00103.1
[21] Müller, U. K., “Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance Matrix, Econometrica, 81, 1805-1849 (2013) · Zbl 1291.62069
[22] Oh, H.-S.; Lee, T. C.; Nychka, D. W., “Fast Nonparametric Quantile Regression With Arbitrary Smoothing Methods, Journal of Computational and Graphical Statistics, 20, 510-526 (2012) · doi:10.1198/jcgs.2010.10063
[23] Robert, C., The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation (2007), New York: Springer, New York · Zbl 1129.62003
[24] Ruppert, D.; Wand, M. P.; Carroll, R. J., Semiparametric Regression (No. 12 (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1038.62042
[25] Silverman, B. W., “Some Aspects of the Spline Smoothing Approach to Non-Parametric Regression Curve Fitting, Journal of the Royal Statistical Society, Series B, 47, 1-21 (1985) · Zbl 0606.62038 · doi:10.1111/j.2517-6161.1985.tb01327.x
[26] Sriram, K.; Ramamoorthi, R.; Ghosh, “Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density, Bayesian Analysis, 8, 479-504 (2013) · Zbl 1329.62308 · doi:10.1214/13-BA817
[27] Syring, N., and Martin, R. (2015), “Scaling the Gibbs Posterior Credible Regions,” arXiv no. 1509.00922. · Zbl 1454.62105
[28] Waldmann, E.; Kneib, T.; Yue, Y. R.; Lang, S.; Flexeder, C., “Bayesian Semiparametric Additive Quantile Regression, Statistical Modelling, 13, 223-252 (2013) · Zbl 07257456 · doi:10.1177/1471082X13480650
[29] Wood, S. N., “Modelling and Smoothing Parameter Estimation With Multiple Quadratic Penalties, Journal of the Royal Statistical Society, Series B, 62, 413-428 (2000) · doi:10.1111/1467-9868.00240
[30] Wood, S. N., Generalized Additive Models: An Introduction With R (2017), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1368.62004
[31] Wood, S. N.; Pya, N.; Säfken, B., “Smoothing Parameter and Model Selection for General Smooth Models, Journal of the American Statistical Association, 111, 1548-1575 (2016) · doi:10.1080/01621459.2016.1180986
[32] Yee, T. W., “The vgam Package,”, R News, 8, 28-39 (2008)
[33] Yu, K.; Moyeed, R. A., “Bayesian Quantile Regression, Statistics & Probability Letters, 54, 437-447 (2001) · Zbl 0983.62017 · doi:10.1016/S0167-7152(01)00124-9
[34] Yue, Y. R.; Rue, H., “Bayesian Inference for Additive Mixed Quantile Regression Models, Computational Statistics & Data Analysis, 55, 84-96 (2011) · Zbl 1247.62101 · doi:10.1016/j.csda.2010.05.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.