×

Dynamics of three-dimensional thin film rupture. (English) Zbl 0992.76013

Summary: We consider the problem of thin film rupture driven by van der Waals forces. A fourth-order nonlinear PDE governs the low-Reynolds number lubrication model for a viscous liquid on a solid substrate. Finite-time singularities in this model equation lead to formation of dry spots in the film. Our study addresses the problem of rupture in the full three-dimensional geometry. We focus on stability and selection of the dynamics determined by initial conditions on small finite domains with planar and axisymmetric geometries. We also address the final stages of the dynamics – self-similar dynamics for point, line, and ring rupture. We demonstrate that line and ring rupture are unstable and generically destabilize the axisymmetric rupture at isolated points.

MSC:

76A20 Thin fluid films
76D08 Lubrication theory
76E17 Interfacial stability and instability in hydrodynamic stability
Full Text: DOI

References:

[1] Ackerberg, R. C., On a nonlinear differential equation of electrohydrodynamics, Proc. R. Soc. London, Ser. A, 312, 129-140 (1969) · Zbl 0191.26103
[2] Bernoff, A. J.; Bertozzi, A. L.; Witelski, T. P., Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Statist. Phys., 93, 3-4, 725-776 (1998) · Zbl 0951.74007
[3] Bertozzi, A. L.; Pugh, M. C., The lubrication approximation for thin viscous films: the moving contact line with a porous media cut-off of van der Waals interactions, Nonlinearity, 7, 6, 1535-1564 (1994) · Zbl 0811.35045
[4] Bertozzi, A. L.; Pugh, M. C., The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49, 2, 85-123 (1996) · Zbl 0863.76017
[5] Bertozzi, A. L.; Pugh, M. C., Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., 51, 6, 625-661 (1998) · Zbl 0916.35008
[6] M.D. Betterton, M.P. Brenner, Collapsing bacterial cylinders, Preprint, 1999.; M.D. Betterton, M.P. Brenner, Collapsing bacterial cylinders, Preprint, 1999.
[7] Bischof, J.; Scherer, D.; Herminghaus, S.; Leiderer, P., Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting, Phys. Rev. Lett., 77, 8, 1536-1539 (1996)
[8] Boos, W.; Thess, A., Cascade of structures in long-wavelength Marangoni instability, Phys. Fluids, 11, 6, 1484-1494 (1999) · Zbl 1147.76333
[9] Brenner, M. P.; Lister, J. R.; Stone, H. A., Pinching threads singularities and the number 0.0304…, Phys. Fluids, 8, 11, 2827-2836 (1996) · Zbl 1027.76510
[10] Burelbach, J. P.; Bankoff, S. G.; Davis, S. H., Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195, 463-494 (1988) · Zbl 0653.76035
[11] V.N. Constantinescu, Laminar Viscous Flow, Springer, New York, 1995.; V.N. Constantinescu, Laminar Viscous Flow, Springer, New York, 1995. · Zbl 0846.76001
[12] Cross, M. C.; Hohenberg, P. C., Pattern formation outside of equilibrium, Rev. Mod. Phys., 65, 3, 854-1112 (1993) · Zbl 1371.37001
[13] Deissler, R. J.; Oron, A., Stable localized patterns in thin liquid films, Phys. Rev. Lett., 68, 19, 2948-2951 (1992)
[14] Eggers, J., Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 69, 3, 865-929 (1997) · Zbl 1205.37092
[15] L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.; L.C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. · Zbl 0902.35002
[16] B. Friedman, Principles and Techniques of Applied Mathematics, Dover, New York, 1990.; B. Friedman, Principles and Techniques of Applied Mathematics, Dover, New York, 1990. · Zbl 1227.00033
[17] M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, New York, 1988.; M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. II, Springer, New York, 1988. · Zbl 0691.58003
[18] Herminghaus, S.; Jacobs, K.; Mecke, K.; Bischof, J.; Fery, A.; Ibn-Elhaj, M.; Schlagowski, S., Spinodal dewetting in liquid crystal and liquid metal films, Science, 282, 5390, 916-919 (1998)
[19] M.H. Holmes, Introduction to Perturbation Methods, Springer, New York, 1995.; M.H. Holmes, Introduction to Perturbation Methods, Springer, New York, 1995. · Zbl 0830.34001
[20] Hwang, C.-C.; Chang, S.-H.; Chen, J.-L., On the rupture process of thin liquid films, J. Colloid Interf. Sci., 159, 184-188 (1993)
[21] Hwang, C.-C.; Lin, C.-K.; Uen, W.-Y., A nonlinear three-dimensional rupture theory of thin liquid films, J. Colloid Interf. Sci., 190, 250-252 (1997)
[22] J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods, Springer, New York, 1996.; J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods, Springer, New York, 1996. · Zbl 0846.34001
[23] Konnur, R.; Kargupta, K.; Sharma, A., Instability and morphology of thin liquid films on chemically heterogeneous substrates, Phys. Rev. Lett., 84, 5, 931-934 (2000)
[24] R.S. Laugesen, M.C. Pugh, Energy levels of steady states for thin film type equations, Preprint, 2000. http://xxx.lanl.gov/abs/math.AP/0003208.; R.S. Laugesen, M.C. Pugh, Energy levels of steady states for thin film type equations, Preprint, 2000. http://xxx.lanl.gov/abs/math.AP/0003208. · Zbl 0980.35030
[25] R.S. Laugesen, M.C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Preprint, 2000. http://xxx.lanl.gov/abs/math.AP/0003209.; R.S. Laugesen, M.C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Preprint, 2000. http://xxx.lanl.gov/abs/math.AP/0003209. · Zbl 1029.35121
[26] R.S. Laugesen, M.C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Rat. Mech. Anal. 154 (2000) 3-51.; R.S. Laugesen, M.C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Rat. Mech. Anal. 154 (2000) 3-51. · Zbl 0980.35030
[27] Laugesen, R. S.; Pugh, M. C., Properties of steady states for thin film equations, Eur. J. Appl. Math., 11, 3, 293-351 (2000) · Zbl 1041.76008
[28] Moriarty, J. A.; Schwartz, L. W., Dynamic considerations in the closing and opening of holes in thin liquid films, J. Colloid Interf. Sci., 161, 335-342 (1993)
[29] Myers, T. G., Thin films with high surface tension, SIAM Rev., 40, 3, 441-462 (1998) · Zbl 0908.35057
[30] J.R. Ockendon, H. Ockendon, Viscous Flow, Cambridge University Press, Cambridge, 1995.; J.R. Ockendon, H. Ockendon, Viscous Flow, Cambridge University Press, Cambridge, 1995. · Zbl 0837.76001
[31] Oron, A.; Bankoff, S. G., Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. Colloid Interf. Sci., 218, 152-166 (1999)
[32] Oron, A.; Davis, S. H.; Bankoff, S. G., Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69, 3, 931-980 (1997)
[33] Oron, A.; Rosenau, P., On a nonlinear thermocapillary effect in thin liquid layers, J. Fluid Mech., 273, 361-374 (1994) · Zbl 0825.76240
[34] Redon, C.; Brochard-Wyart, F.; Rondelez, F., Dynamics of dewetting, Phys. Rev. Lett., 66, 6, 715-718 (1991)
[35] Reiter, G., Dewetting of thin polymer-films, Phys. Rev. Lett., 68, 1, 75-78 (1992)
[36] Reiter, G., Thin-film pattern formation — the artistic side of intermolecular forces, Science, 282, 5390, 888-889 (1998)
[37] Sharma, A.; Khanna, R., Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81, 16, 3463-3466 (1998)
[38] Sharma, A.; Khanna, R., Pattern formation in unstable thin liquid films under the influence of antagonistic short-and long-range forces, J. Chem. Phys., 110, 10, 4929-4936 (1999)
[39] Taylor, J. E.; Cahn, J. W., Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Statist. Phys., 77, 1-2, 183-197 (1994) · Zbl 0844.35044
[40] VanHook, S. J.; Schatz, M. F.; McCormick, W. D.; Swift, J. B.; Swinney, H. L., Long-wavelength instability in surface-tension-driven Bénard convection, Phys. Rev. Lett., 75, 24, 4397-4400 (1995)
[41] VanHook, S. J.; Schatz, M. F.; Swift, J. B.; McCormick, W. D.; Swinney, H. L., Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., 345, 45-78 (1997) · Zbl 0927.76036
[42] D. Vaynblat, J.R. Lister, T.P. Witelski, Rupture of thin viscous films by van der Waals forces, Preprint, 1999.; D. Vaynblat, J.R. Lister, T.P. Witelski, Rupture of thin viscous films by van der Waals forces, Preprint, 1999. · Zbl 1184.76571
[43] Williams, M. B.; Davis, S. H., Nonlinear theory of film rupture, J. Colloid Interf. Sci., 90, 220 (1982)
[44] Witelski, T. P.; Bernoff, A. J., Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids, 11, 9, 2443-2445 (1999) · Zbl 1149.76588
[45] Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A., Spinodal dewetting of thin polymer films, Phys. Rev. Lett., 81, 6, 1251-1254 (1998)
[46] Yiantsios, S. G.; Davis, R. H., Close approach and deformation of two viscous drops due to gravity and van der Waals forces, J. Colloid Interf. Int. Sci., 144, 412-433 (1991)
[47] Yiantsios, S. G.; Higgins, B. G., Rupture of thin films: nonlinear stability analysis, J. Colloid Interf. Int. Sci., 147, 341-350 (1991)
[48] Zhang, W. W.; Lister, J. R., Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids, 11, 9, 2454-2462 (1999) · Zbl 1149.76597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.