×

Local linear estimator for stochastic differential equations driven by \(\alpha\)-stable Lévy motions. (English) Zbl 1396.62064

Summary: We study the local linear estimator for the drift coefficient of stochastic differential equations driven by \(\alpha\)-stable Lévy motions observed at discrete instants. Under regular conditions, we derive the weak consistency and central limit theorem of the estimator. Compared with Nadaraya-Watson estimator, the local linear estimator has a bias reduction whether the kernel function is symmetric or not under different schemes. A simulation study demonstrates that the local linear estimator performs better than Nadaraya-Watson estimator, especially on the boundary.

MSC:

62G05 Nonparametric estimation
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
62G20 Asymptotic properties of nonparametric inference
62M05 Markov processes: estimation; hidden Markov models
65C30 Numerical solutions to stochastic differential and integral equations

Software:

KernSmooth
Full Text: DOI

References:

[1] Aït-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process. Ann Statist, 2009, 37: 184-222 · Zbl 1155.62057 · doi:10.1214/07-AOS568
[2] Aït-Sahalia Y, Jacod J. Estimating the degree of activity of jumps in high frequency data. Ann Statist, 2009, 37: 2202-2224 · Zbl 1173.62060 · doi:10.1214/08-AOS640
[3] Allen D M. The relationship between variable and data augmentation and a method of prediction. Technometrics, 1974, 16: 125-127 · Zbl 0286.62044 · doi:10.1080/00401706.1974.10489157
[4] Andersen T, Benzoni L, Lund J. An empirical investigation of continuous time equity return models. J Finance, 2002, 57: 1239-1284 · doi:10.1111/1540-6261.00460
[5] Bandi F, Nguyen T. On the functional estimation of jump diffusion models. J Econometrics, 2003, 116: 293-328 · Zbl 1038.62071 · doi:10.1016/S0304-4076(03)00110-6
[6] Bandi F, Phillips P. Fully nonparametric estimation of scalar diffusion models. Econometrica, 2003, 71: 241-283 · Zbl 1136.62365 · doi:10.1111/1468-0262.00395
[7] Bandi F, Phillips P. A simple approach to the parametric estimation of potentially nonstationary diffusions. J Econometrics, 2007, 137: 354-395 · Zbl 1360.62443 · doi:10.1016/j.jeconom.2005.06.033
[8] Barndorff-Nielsen O E, Mikosch T, Resnick S. Lévy Processes, Theory and Applications. Boston: Birkhäuser, 2001 · Zbl 0961.00012 · doi:10.1007/978-1-4612-0197-7
[9] Baskshi G, Cao Z, Chen Z. Empirical performance of alternative option pricing models. J Finance, 1997, 52: 2003-2049 · doi:10.1111/j.1540-6261.1997.tb02749.x
[10] Bosq D. Nonparametric Statistics for Stochastic Processes. Lecture Notes in Statistics, vol. 110. New York: Springer-Verlag, 1996 · Zbl 0857.62081 · doi:10.1007/978-1-4684-0489-0
[11] Bradley R. Basic properties of strong mixing conditions: A survey and some open questions. Probab Surv, 2005, 2: 107-144 · Zbl 1189.60077 · doi:10.1214/154957805100000104
[12] Cleveland W. Robust locally weighted regression and smoothing scatter plots. J Amer Statis Assoc, 1979, 74: 829-836 · Zbl 0423.62029 · doi:10.1080/01621459.1979.10481038
[13] Duffie D, Pan J, Singleton K. Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 2000, 68: 1343-1376 · Zbl 1055.91524 · doi:10.1111/1468-0262.00164
[14] Fan J. Design-adaptive nonparametric regression. J Amer Statis Assoc, 1992, 87: 998-1004 · Zbl 0850.62354 · doi:10.1080/01621459.1992.10476255
[15] Fan J, Gijbels I. Variable bandwidth and local linear regression smoothers. Ann Statist, 1992, 20: 2008-2036 · Zbl 0765.62040 · doi:10.1214/aos/1176348900
[16] Fan J, Gijbels I. Data-driven bandwidth selection in local polynomial fitting: Variable bandwidth and spatial adaptation. J R Stat Soc Ser B, 1995, 57: 371-394 · Zbl 0813.62033
[17] Fan J, Gijbels I. Local Polynomial Modeling and its Applications. New York: Chapman and Hall, 1996 · Zbl 0873.62037
[18] Fan J, Zhang C. A re-examination of diffusion estimators with applications to financial model validation. J Amer Statist Assoc, 2003, 98: 118-134 · Zbl 1073.62571 · doi:10.1198/016214503388619157
[19] Gasser, T.; Müller, H. G., Kernel estimation of regression functions, No. 757, 23-68 (1979), New York · Zbl 0418.62033 · doi:10.1007/BFb0098489
[20] Hall P, Presnell B. Intentionally biased bootstrap methods. J R Stat Soc Ser B, 1999, 61: 143-158 · Zbl 0931.62036 · doi:10.1111/1467-9868.00168
[21] Hanif M. Local linear estimation of recurrent jump-diffusion models. Comm Statist Theory Methods, 2012, 41: 4142-4163 · Zbl 1284.60148 · doi:10.1080/03610926.2011.569680
[22] Hu Y, Long H. Least squares estimator for Ornstein-Uhlenbeck processes driven by α-stable motions. Stochastic Process Appl, 1999, 119: 2465-2480 · Zbl 1171.62045 · doi:10.1016/j.spa.2008.12.006
[23] Jacod J, Kurtz T G, Méléard S, et al. The approximate Euler method for Lévy driven stochastic differential equations. Ann Inst H Poincaré Probab Statist, 2005, 41: 523-558 · Zbl 1071.60046 · doi:10.1016/j.anihpb.2004.01.007
[24] Jacod J, Li Y, Mykland P A, et al. Microstructure noise in the continuous case: The pre-averaging approach. Stochastic Process Appl, 2009, 119: 2249-2276 · Zbl 1166.62078 · doi:10.1016/j.spa.2008.11.004
[25] Jacod J, Protter P. Discretization of Processes. Heidelberg-New York: Springer-Verlag, 2012 · Zbl 1259.60004 · doi:10.1007/978-3-642-24127-7
[26] Jacod J, Shiryaev A. Limit Theory for Stochastic Processes. Berlin: Springer, 2003 · Zbl 1018.60002 · doi:10.1007/978-3-662-05265-5
[27] Janicki A, Weron A. Simulation and Chaotic Behavior of α-Stable Stochastic Processes. New York: Marcel Dekker, 1994 · Zbl 0946.60028
[28] Johannes M S. The economic and statistical role of jumps to interest rates. J Finance, 2004, 59: 227-260 · doi:10.1111/j.1540-6321.2004.00632.x
[29] Kyprianou A, Schouten W, Wilmott P. Exotic Option Pricing and Advanced Lévy Models. Hoboken: Wiley, 2005 · Zbl 1140.91050
[30] Long H, Qian L. Nadaraya-Watson estimator for stochastic processes driven by stable Lévy motions. Working paper, http://math.fau.edu/long/QianLongSPA08.pdf · Zbl 1337.62204
[31] Masuda H. On multi-dimensional Ornstein-Uhlenbeck processes driven by a general Lévy process. Bernoulli, 2004, 10: 1-24 · Zbl 1048.60060 · doi:10.3150/bj/1077544605
[32] Masuda H. Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps. Stochastic Process Appl, 2007, 117: 35-56 · Zbl 1118.60070 · doi:10.1016/j.spa.2006.04.010
[33] Masuda H. Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes. Electron J Probab, 2010, 4: 525-565 · Zbl 1329.62364
[34] Moloche G. Local nonparametric estimation of scalar diffusions. Working paper, MIT, 2010
[35] Nicolau J. Nonparametric estimation of second-order stochastic differential equations. Econometric Theory, 2007, 23: 880-898 · Zbl 1237.62105 · doi:10.1017/S0266466607070375
[36] Prakasa Rao B L S. Estimation of the drift for diffusion process. Statistics, 1985, 16: 263-275 · Zbl 0574.62083 · doi:10.1080/02331888508801854
[37] Ruppert D, Wand M P. Multivariate locally weighted least squares regression. Ann Statist, 1994, 22: 1346-1370 · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[38] Sato K I. Lévy Processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999 · Zbl 0973.60001
[39] Schertzer D, Larchevêque M, Duan J, et al. Fractional Fokker-Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises. J Math Phys, 2001, 42: 200-212 · Zbl 1006.60052 · doi:10.1063/1.1318734
[40] Schoutens W. Lévy Processes in Finance: Pricing Financial Derivatives. Hoboken: Wiley, 2003 · doi:10.1002/0470870230
[41] Shimizu Y, Yoshida N. Estimation of parameters for diffusion processes with jumps from discrete observation. Stat Inference Stoch Process, 2006, 9: 227-277 · Zbl 1125.62089 · doi:10.1007/s11203-005-8114-x
[42] Silverman B W. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall, 1986 · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[43] Stone C. Optimal global rates of convergence for nonparametric regression. Ann Statist, 1982, 10: 1040-1053 · Zbl 0511.62048 · doi:10.1214/aos/1176345969
[44] Stone M. Cross-validity choice and assesment of statistical predictions (with discussion). J R Stat Soc Ser B, 1974, 36: 111-147 · Zbl 0308.62063
[45] Sun S, Zhang X. Empirical likelihood estimation of discretely sampled processes of OU type. Sci China Ser A, 2009, 52: 908-931 · Zbl 1176.62081 · doi:10.1007/s11425-008-0159-z
[46] Wand M, Jone C. Kernel Smoothing. London: Chapman and Hall, 1995 · Zbl 0854.62043 · doi:10.1007/978-1-4899-4493-1
[47] Wang H, Lin Z. Local linear estimation of second-order diffusion models. Comm Statist Theory Methods, 2011, 40: 394-407 · Zbl 1208.62131 · doi:10.1080/03610920903391345
[48] West B J, Seshadri V. Linear systems with Lévy fluctuations. Physica A, 1982, 113: 203-216 · doi:10.1016/0378-4371(82)90015-2
[49] Xu K. Empirical likelihood based inference for nonparametric recurrent diffusions. J Econometrics, 2009, 153: 65-82 · Zbl 1431.62344 · doi:10.1016/j.jeconom.2009.04.006
[50] Xu K. Re-weighted functional estimation of diffusion models. Econometric Theory, 2010, 26: 541-563 · Zbl 1185.62150 · doi:10.1017/S0266466609100087
[51] Zhang L, Mykland P A, Aït-Sahalia Y. A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J Amer Statist Assoc, 2005, 100: 1394-1411 · Zbl 1117.62461 · doi:10.1198/016214505000000169
[52] Zhao Z, Wu W B. Nonparametric inference of discretely sampled stable Lévy processes. J Econometrics, 2009, 153: 83-92 · Zbl 1431.62345 · doi:10.1016/j.jeconom.2009.04.007
[53] Zhou Q, Yu J. Asymptotic distributions of the least squares estimator for diffusion process. Working paper, Singapore Management University, 2010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.