×

Asymptotics of solutions in the problem about small motions of a compressible Maxwell fluid. (English. Russian original) Zbl 1433.35310

Differ. Equ. 55, No. 9, 1150-1163 (2019); translation from Differ. Uravn. 55, No. 9, 1195-1208 (2019).
Summary: A model of a viscoelastic compressible Maxwell fluid is studied. This model is described by a system of partial integro-differential equations with appropriate boundary and initial conditions. An abstract analog of the problem under study is also considered. It is proved that a uniformly exponentially stable \(C_0\)-semigroup emerges in this problem. Based on this fact, an estimate for the solution of the evolution problem is derived in the case where the external load is close to being almost periodic.

MSC:

35Q35 PDEs in connection with fluid mechanics
76A10 Viscoelastic fluids
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35R09 Integro-partial differential equations
35B35 Stability in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
74D05 Linear constitutive equations for materials with memory
74B05 Classical linear elasticity
35Q74 PDEs in connection with mechanics of deformable solids
45R05 Random integral equations
Full Text: DOI

References:

[1] Zakora, D.A., Maxwell compressible fluid model, Sovrem. Mat. Fundam. Napravl., 2017, vol. 63, no. 2, pp. 247-265.
[2] Dafermos, C.M., Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 1970, vol. 37, pp. 297-308. · Zbl 0214.24503 · doi:10.1007/BF00251609
[3] Dafermos, C.M., On abstract Volterra equations with applications to linear viscoelasticity, J. Diff. Equat., 1970, vol. 7, pp. 554-569. · Zbl 0212.45302 · doi:10.1016/0022-0396(70)90101-4
[4] Fabrizio, M. and Morro, A., Mathematical Problems in Linear Viscoelasticity. SIAM Studies in Applied Mathematics, vol. 12, Philadelphia: SIAM, 1992. · Zbl 0753.73003
[5] Pruss, J., Evolutionary Integral Equations and Applications, Basel: Birkhauser, 1993. · Zbl 0793.45014 · doi:10.1007/978-3-0348-8570-6
[6] Amedola, G., Fabrizio, M., and Golden, J.M., Thermodynamics of Materials with Memory. Theory and Applications. New York-Dordrecht-Heidelberg-London: Springer, 2012. · Zbl 1237.80001 · doi:10.1007/978-1-4614-1692-0
[7] Liu, Z. and Zheng, S., Semigroups Associated with Dissipative Systems, Research Notes in Mathematics Series, vol. 398, Boca Raton-London-New York-Washington: Chapman & Hall/CRC, 1999. · Zbl 0924.73003
[8] Vlasov, V.V. and Rautian, N.A., Spektral’nyi analiz funktsional’nykh differentsial’nykh uravnenii (Spectral Analysis of Functional Differential Equations), Moscow: MAKS, 2016.
[9] Krein, S.G., Lineinye differentsial’nye uravneniya v banakhovom prostranstve (Linear Differential Equations in a Banach Space), Moscow: Nauka, 1967.
[10] Birman, M.Sh. and Solomjak, M.Z., Spectral Theory of Self-Adjoint Operators in Hilbert Space, Dordrecht-Boston-Tokyo: Springer, 1987. · Zbl 0744.47017 · doi:10.1007/978-94-009-4586-9
[11] Zakora, D.A., Exponential stability of a certain semigroup and applications, Math. Notes, 2018, vol. 103, nos. 5-6, pp. 745-760. · Zbl 06930051 · doi:10.1134/S0001434618050073
[12] Gearhart, L., Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc., 1978, vol. 236, pp. 385-394. · Zbl 0326.47038 · doi:10.1090/S0002-9947-1978-0461206-1
[13] Rektorys, K., Variationsmethoden in Mathematik, Physik und Technik, Munich-Vienna: Carl Hanser-Verl., 1984. Translated under the title Variatsionnye metody v matematicheskoi fizike i tekhnike, Moscow: Mir, 1985. · Zbl 0568.49001
[14] Volevich, L.R., Solvability of boundary value problems for general elliptic systems, Mat. Sb., 1965, vol. 68 (110), no. 3, pp. 373-416. · Zbl 0141.29801
[15] Solonnikov, VA, On general boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. II, 233-297 (1966)
[16] Grubb, G. and Geymonat, G., The essential spectrum of elliptic systems of mixed order, Math. Ann., 1977, vol. 227, pp. 247-276. · Zbl 0361.35050 · doi:10.1007/BF01361859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.