×

A model for dislocations in epitaxially strained elastic films. (English. French summary) Zbl 1387.49005

The paper deals with the variational model for epitaxially strained films. Starting by some variational formulation studied by E. Bonnetier and A. Chambolle [SIAM J. Appl. Math. 62, No. 4, 1093–1121 (2002; Zbl 1001.49017)] and the authors [Arch. Ration. Mech. Anal. 186, No. 3, 477–537 (2007; Zbl 1126.74029)], within the context of equilibrium configurations of epitaxially strained films without dislocations, the authors propose a new mathematical model, which takes into account also the formation of misfits dislocations. Existence, regularity and some qualitative properties of solutions are studied.

MSC:

49J10 Existence theories for free problems in two or more independent variables
49J40 Variational inequalities
74K35 Thin films
74B05 Classical linear elasticity
49N60 Regularity of solutions in optimal control

References:

[1] Alicandro, R.; De Luca, L.; Garroni, A.; Ponsiglione, M., Metastability and dynamics of discrete topological singularities in two dimensions: a Γ-convergence approach, Arch. Ration. Mech. Anal., 214, 269-330 (2014) · Zbl 1305.82013
[2] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs (2000), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York · Zbl 0957.49001
[3] Ariza, M. P.; Ortiz, M., Discrete crystal elasticity and discrete dislocations in crystals, Arch. Ration. Mech. Anal., 178, 149-226 (2005) · Zbl 1115.74012
[4] Asaro, R. J.; Tiller, W. A., Interface morphology development during stress corrosion cracking, part I: via surface diffusion, Metall. Trans., 3, 1789-1796 (1972)
[5] Bella, P.; Goldman, M.; Zwicknagl, B., Study of island formation in epitaxially strained films on unbounded domains, Arch. Ration. Mech. Anal., 218, 163-217 (2015) · Zbl 1327.74101
[6] Blass, T.; Fonseca, I.; Leoni, G.; Morandotti, M., Dynamics for systems of screw dislocations, SIAM J. Appl. Math., 75, 393-419 (2015) · Zbl 1322.34059
[7] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, vol. 183 (2012), Springer Science and Business Media: Springer Science and Business Media New York
[8] Bonacini, M., Epitaxially strained elastic films: the case of anisotropic surface energies, ESAIM Control Optim. Calc. Var., 19, 167-189 (2013) · Zbl 1441.74121
[9] Bonacini, M., Stability of equilibrium configurations for elastic films in two and three dimensions, Adv. Calc. Var., 8, 117-153 (2015) · Zbl 1322.49033
[10] Bonnetier, E.; Chambolle, A., Computing the equilibrium configuration of epitaxially strained crystalline films, SIAM J. Appl. Math., 62, 1093-1121 (2002) · Zbl 1001.49017
[11] Bonnetier, E.; Falk, R. S.; Grinfeld, M. A., Analysis of a one-dimensional variational model of the equilibrium shape of a deformable crystal, Modél. Math. Anal. Numér., 33, 573-591 (1999) · Zbl 0958.74022
[12] Braides, A.; Chambolle, A.; Solci, M., A relaxation result for energies defined on pairs set-function and applications, ESAIM Control Optim. Calc. Var., 13, 717-734 (2007) · Zbl 1149.49017
[13] Cermelli, P.; Leoni, G., Renormalized energy and forces on dislocations, SIAM J. Math. Anal., 37, 1131-1160 (2005) · Zbl 1141.74023
[14] Chambolle, A.; Larsen, C. J., \(C^\infty\) regularity of the free boundary for a two-dimensional optimal compliance problem, Calc. Var. Partial Differ. Equ., 18, 77-94 (2003) · Zbl 1026.49031
[15] Chambolle, A.; Solci, M., Interaction of a bulk and a surface energy with a geometrical constraint, SIAM J. Math. Anal., 39, 77-102 (2007) · Zbl 1354.49022
[16] Conti, S.; Garroni, A.; Ortiz, M., The line-tension approximation as the dilute limit of linearelastic dislocations, Arch. Ration. Mech. Anal., 218, 699-755 (2015) · Zbl 1457.35079
[17] De Luca, L.; Garroni, A.; Ponsiglione, M., Γ-convergence analysis of systems of edge dislocations: the self energy regime, Arch. Ration. Mech. Anal., 206, 885-910 (2012) · Zbl 1366.74006
[18] De Maria, B.; Fusco, N., Regularity properties of equilibrium configurations of epitaxially strained elastic films, (Topics in Modern Regularity Theory. Topics in Modern Regularity Theory, CRM Series, vol. 13 (2012), Ed. Norm: Ed. Norm Pisa), 169-204 · Zbl 1290.74027
[19] Elder, K. R.; Provatas, N.; Berry, J.; Stefanovic, P.; Grant, M., Phase-field crystal modeling and classical density functional theory of freezing, Phys. Rev. B, 75, Article 064107 pp. (2007)
[20] Fanzon, S.; Palombaro, M. P.; Ponsiglione, M., A variational model for dislocations at semi-coherent interfaces, J. Nonlinear Sci. (2017) · Zbl 1386.74026
[21] Fonseca, I.; Fusco, N.; Leoni, G.; Morini, M., Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results, Arch. Ration. Mech. Anal., 186, 477-537 (2007) · Zbl 1126.74029
[22] Fonseca, I.; Fusco, N.; Leoni, G.; Morini, M., Motion of elastic thin films by anisotropic surface diffusion with curvature regularization, Arch. Ration. Mech. Anal., 205, 425-466 (2012) · Zbl 1270.74127
[23] Fonseca, I.; Fusco, N.; Leoni, G.; Morini, M., Motion of three-dimensional elastic films by anisotropic surface diffusion with curvature regularization, Anal. PDE, 8, 373-423 (2015) · Zbl 1331.35162
[24] Fung, Y. C., A First Course in Continuum Mechanics (1969), Prentice-Hall, Inc.: Prentice-Hall, Inc. Englewood Cliffs, NJ
[25] Fusco, N.; Morini, M., Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions, Arch. Ration. Mech. Anal., 203, 247-327 (2012) · Zbl 1281.74024
[26] Gao, H.; Nix, W. D., Surface roughening of heteroepitaxial thin films, Annu. Rev. Mater. Sci., 29, 173-209 (1999)
[27] Geers, M. G.D.; Peerlings, R. H.J.; Peletier, M. A.; Scardia, L., Asymptotic behaviour of a pile-up of infinite walls of edge dislocations, Arch. Ration. Mech. Anal., 209, 495-539 (2013) · Zbl 1282.74067
[28] Garroni, A.; Leoni, G.; Ponsiglione, M., Gradient theory for plasticity via homogenization of discrete dislocations, J. Eur. Math. Soc., 12, 1231-1266 (2010) · Zbl 1200.74017
[29] Goldman, M.; Zwicknagl, B., Scaling law and reduced models for epitaxially strained crystalline films, SIAM J. Math. Anal., 46, 1-24 (2014) · Zbl 1287.49015
[30] Grinfeld, M. A., Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt, Sov. Phys. Dokl., 31, 831-834 (1986)
[31] Grinfeld, M. A., Stress driven instabilities in crystals: mathematical models and physical manifestation, J. Nonlinear Sci., 3, 35-83 (1993) · Zbl 0843.73040
[32] Grisvard, P., Singularités en elasticité, Arch. Ration. Mech. Anal., 107, 157-180 (1989) · Zbl 0706.73013
[33] Haataja, M.; Müller, J.; Rutenberg, A. D.; Grant, M., Dislocations and morphological instabilities: continuum modeling of misfitting heteroepitaxial films, Phys. Rev. B, 65, Article 165414 pp. (2002)
[34] Hudson, T.; Ortner, C., Existence and stability of a screw dislocation under anti-plane deformation, Arch. Ration. Mech. Anal., 213, 887-929 (2014) · Zbl 1342.82146
[35] Hudson, T.; Ortner, C., Analysis of stable screw dislocation configurations in an antiplane lattice model, SIAM J. Math. Anal., 47, 291-320 (2015) · Zbl 1317.74035
[36] Jesson, D. E.; Pennycook, S. J.; Baribeau, J.-M.; Houghton, D. C., Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation, Phys. Rev. Lett., 71, 1744-1748 (1993)
[37] Koch, H.; Leoni, G.; Morini, M., On optimal regularity of free boundary problems and a conjecture of De Giorgi, Commun. Pure Appl. Math., 58, 1051-1076 (2005) · Zbl 1082.35168
[38] Lazzaroni, G.; Palombaro, M.; Schlömerkemper, A., Rigidity of Three-Dimensional Lattices and Dimension Reduction in Heterogeneous Nanowires (2015), Preprint
[39] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press · Zbl 1024.78009
[40] Mora, M. G.; Peletier, M.; Scardia, L., Convergence of Interaction-Driven Evolutions of Dislocations with Wasserstein Dissipation and Slip-Plane Confinement (2014), Preprint
[41] Nabarro, F. R.N., Theory of Crystal Dislocations (1967), Clarendon Press: Clarendon Press Oxford
[42] Nicaise, S., About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation, I: regularity of the solutions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 19, 327-361 (1992) · Zbl 0782.73041
[43] Nitsche, J. A., On Korn’s second inequality, RAIRO. Anal. Numér., 15, 237-248 (1981) · Zbl 0467.35019
[44] Piovano, P., Evolution of elastic thin films with curvature regularization via minimizing movements, Calc. Var. Partial Differ. Equ., 49, 337-367 (2014) · Zbl 1288.35282
[45] Ponsiglione, M., Elastic energy stored in a crystal induced by screw dislocations: from discrete to continuous, SIAM J. Math. Anal., 39, 449-469 (2007) · Zbl 1135.74037
[46] Spencer, B. J., Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski-Krastanow islands, Phys. Rev. B, 59, 3, 2011-2017 (1999)
[47] Spencer, B. J.; Meiron, D. I., Nonlinear evolution of stress-driven morphological instability in a two-dimensional semi-infinite solid, Acta Metall. Mater., 42, 3629-3641 (1994)
[48] Spencer, B. J.; Tersoff, J., Equilibrium shapes and properties of epitaxially strained islands, Phys. Rev. Lett., 79, 4858-4861 (1997)
[49] Tersoff, J.; LeGoues, F. K., Competing relaxation mechanisms in strained layers, Phys. Rev. Lett., 72, 3570-3574 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.