×

Optimal surrogate boundary selection and scalability studies for the shifted boundary method on octree meshes. (English) Zbl 1536.74288

Summary: The accurate and efficient simulation of Partial Differential Equations (PDEs) in and around arbitrarily defined geometries is critical for many application domains. Immersed boundary methods (IBMs) alleviate the usually laborious and time-consuming process of creating body-fitted meshes around complex geometry models (described by CAD or other representations, e.g., STL, point clouds), especially when high levels of mesh adaptivity are required. In this work, we advance the field of IBM in the context of the recently developed Shifted Boundary Method (SBM). In the SBM, the location where boundary conditions are enforced is shifted from the actual boundary of the immersed object to a nearby surrogate boundary, and boundary conditions are corrected utilizing Taylor expansions. This approach allows choosing surrogate boundaries that conform to a Cartesian mesh without losing accuracy or stability. Our contributions in this work are as follows: (a) we show that the SBM numerical error can be greatly reduced by an optimal choice of the surrogate boundary, (b) we mathematically prove the optimal convergence of the SBM for this optimal choice of the surrogate boundary, (c) we deploy the SBM on massively parallel octree meshes, including algorithmic advances to handle incomplete octrees, and (d) we showcase the applicability of these approaches with a wide variety of simulations involving complex shapes, sharp corners, and different topologies. Specific emphasis is given to Poisson’s equation and the linear elasticity equations.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65Y05 Parallel numerical computation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity

References:

[1] Mittal, R.; Iaccarino, G., Immersed boundary methods. Annu. Rev. Fluid Mech., 239-261 (2005) · Zbl 1117.76049
[2] Peskin, C. S., Flow patterns around heart valves: a numerical method. J. Comput. Phys., 2, 252-271 (1972) · Zbl 0244.92002
[3] Xu, F.; Schillinger, D.; Kamensky, D.; Varduhn, V.; Wang, C.; Hsu, M.-C., The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries. Comput. & Fluids, 135-154 (2016) · Zbl 1390.76372
[4] Hoang, T.; Verhoosel, C. V.; Qin, C.-Z.; Auricchio, F.; Reali, A.; van Brummelen, E. H., Skeleton-stabilized immersogeometric analysis for incompressible viscous flow problems. Comput. Methods Appl. Mech. Engrg., 421-450 (2019) · Zbl 1440.76069
[5] de Prenter, F.; Verhoosel, C.; van Brummelen, E., Preconditioning immersed isogeometric finite element methods with application to flow problems. Comput. Methods Appl. Mech. Engrg., 604-631 (2019) · Zbl 1440.65197
[6] Zhu, Q.; Xu, F.; Xu, S.; Hsu, M.-C.; Yan, J., An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput. Methods Appl. Mech. Engrg. (2019)
[7] Saurabh, K.; Gao, B.; Fernando, M.; Xu, S.; Khanwale, M. A.; Khara, B.; Hsu, M.-C.; Krishnamurthy, A.; Sundar, H.; Ganapathysubramanian, B., Industrial scale large eddy simulations with adaptive octree meshes using immersogeometric analysis. Comput. Math. Appl., 28-44 (2021)
[8] Hsu, M.-C.; Wang, C.; Xu, F.; Herrema, A. J.; Krishnamurthy, A., Direct immersogeometric fluid flow analysis using B-rep CAD models. Comput. Aided Geom. Design, 143-158 (2016) · Zbl 1418.76042
[9] Wang, C.; Xu, F.; Hsu, M.-C.; Krishnamurthy, A., Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces. Comput. Aided Geom. Design, 190-204 (2017) · Zbl 1505.65101
[10] Balu, A.; Rajanna, M. R.; Khristy, J.; Xu, F.; Krishnamurthy, A.; Hsu, M.-C., Direct immersogeometric fluid flow and heat transfer analysis of objects represented by point clouds. Comput. Methods Appl. Mech. Engrg. (2023) · Zbl 1536.76058
[11] Xu, F.; Johnson, E. L.; Wang, C.; Jafari, A.; Yang, C.-H.; Sacks, M. S.; Krishnamurthy, A.; Hsu, M.-C., Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. Mech. Res. Commun. (2021)
[12] Parvizian, J.; Düster, A.; Rank, E., Finite cell method: \(h\)- and \(p\)- extension for embedded domain methods in solid mechanics. Comput. Mech., 122-133 (2007) · Zbl 1162.74506
[13] Massing, A.; Larson, M.; Logg, A.; Rognes, M., A Nitsche-based cut finite element method for a fluid-structure interaction problem. Commun. Appl. Math. Comput. Sci., 2, 97-120 (2015) · Zbl 1326.74122
[14] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: Discretizing geometry and partial differential equations. Internat. J. Numer. Methods Engrg., 7, 472-501 (2015) · Zbl 1352.65604
[15] Burman, E., Ghost penalty. C. R. Math., 21-22, 1217-1220 (2010) · Zbl 1204.65142
[16] Burman, E.; Hansbo, P., Fictitious domain methods using cut elements: III. A stabilized nitsche method for Stokes’ problem. ESAIM Math. Model. Numer. Anal., 3, 859-874 (2014) · Zbl 1416.65437
[17] Schott, B.; Rasthofer, U.; Gravemeier, V.; Wall, W., A face-oriented stabilized nitsche-type extended variational multiscale method for incompressible two-phase flow. Internat. J. Numer. Methods Engrg., 7, 721-748 (2015) · Zbl 1352.76067
[18] Schott, B.; Wall, W., A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 233-265 (2014) · Zbl 1423.76273
[19] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math., 4, 328-341 (2012) · Zbl 1316.65099
[20] Burman, E.; Fernández, M. A., An unfitted nitsche method for incompressible fluid-structure interaction using overlapping meshes. Comput. Methods Appl. Mech. Engrg., 497-514 (2014) · Zbl 1423.74867
[21] Saurabh, K.; Ishii, M.; Khanwale, M. A.; Sundar, H.; Ganapathysubramanian, B., Scalable adaptive algorithms for next-generation multiphase simulations (2022), arXiv preprint arXiv:2209.12130
[22] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J. Comput. Phys., 972-995 (2018) · Zbl 1415.76457
[23] Main, A.; Scovazzi, G., The shifted boundary method for embedded domain computations. Part II: Linear advection-diffusion and incompressible Navier-Stokes equations. J. Comput. Phys., 996-1026 (2018) · Zbl 1415.76458
[24] Karatzas, E. N.; Stabile, G.; Nouveau, L.; Scovazzi, G.; Rozza, G., A reduced-order shifted boundary method for parametrized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.76086
[25] Atallah, N. M.; Canuto, C.; Scovazzi, G., The second-generation shifted boundary method and its numerical analysis. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.76063
[26] Atallah, N.; Canuto, C.; Scovazzi, G., The shifted boundary method for solid mechanics. Internat. J. Numer. Methods Engrg., 20, 5935-5970 (2021) · Zbl 07863919
[27] Atallah, N.; Canuto, C.; Scovazzi, G., Analysis of the Shifted Boundary Method for the Poisson problem in domains with corners. Math. Comp., 2041-2069 (2021) · Zbl 1472.65140
[28] Colomés, O.; Main, A.; Nouveau, L.; Scovazzi, G., A weighted shifted boundary method for free surface flow problems. J. Comput. Phys. (2021) · Zbl 07508445
[29] Atallah, N. M.; Canuto, C.; Scovazzi, G., The high-order shifted boundary method and its analysis. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.65230
[30] Zeng, X.; Stabile, G.; Karatzas, E. N.; Scovazzi, G.; Rozza, G., Embedded domain reduced basis models for the shallow water hyperbolic equations with the shifted boundary method. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.76128
[31] K. Saurabh, M. Ishii, M. Fernando, B. Gao, K. Tan, M.-C. Hsu, A. Krishnamurthy, H. Sundar, B. Ganapathysubramanian, Scalable adaptive PDE solvers in arbitrary domains, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2021, pp. 1-15.
[32] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput., 3, 1103-1133 (2011) · Zbl 1230.65106
[33] Sundar, H.; Sampath, R. S.; Biros, G., Bottom-up construction and 2: 1 balance refinement of linear octrees in parallel. SIAM J. Sci. Comput., 5, 2675-2708 (2008) · Zbl 1186.68554
[34] M. Ishii, M. Fernando, K. Saurabh, B. Khara, B. Ganapathysubramanian, H. Sundar, Solving PDEs in space-time: 4D tree-based adaptivity, mesh-free and matrix-free approaches, in: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019, pp. 1-61.
[35] Alzetta, G.; Arndt, D.; Bangerth, W.; Boddu, V.; Brands, B.; Davydov, D.; Gassmoeller, R.; Heister, T.; Heltai, L.; Kormann, K.; Kronbichler, M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 9.0. J. Numer. Math., 4, 173-183 (2018) · Zbl 1410.65363
[36] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys., 2, 572-600 (2003) · Zbl 1076.76002
[37] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys., 16, 5838-5866 (2009) · Zbl 1280.76020
[38] Popinet, S.; Rickard, G., A tree-based solver for adaptive ocean modelling. Ocean Model., 3-4, 224-249 (2007)
[39] Min, C.; Gibou, F., A second order accurate level set method on non-graded adaptive cartesian grids. J. Comput. Phys., 1, 300-321 (2007) · Zbl 1122.65077
[40] Guittet, A.; Theillard, M.; Gibou, F., A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive quad/octrees. J. Comput. Phys., 215-238 (2015) · Zbl 1349.76336
[41] Mirzadeh, M.; Guittet, A.; Burstedde, C.; Gibou, F., Parallel level-set methods on adaptive tree-based grids. J. Comput. Phys., 345-364 (2016) · Zbl 1352.65253
[42] Sundar, H.; Sampath, R.; Biros, G., Bottom-up construction and 2:1 balance refinement of linear octrees in parallel. SIAM J. Sci. Comput., 5, 2675-2708 (2008) · Zbl 1186.68554
[43] I. Bogle, K. Devine, M. Perego, S. Rajamanickam, G.M. Slota, A Parallel Graph Algorithm for Detecting Mesh Singularities in Distributed Memory Ice Sheet Simulations, in: Proceedings of the 48th International Conference on Parallel Processing, 2019, pp. 1-10.
[44] M. Fernando, D. Duplyakin, H. Sundar, Machine and application aware partitioning for adaptive mesh refinement applications, in: Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing, 2017, pp. 231-242.
[45] Fernando, M.; Neilsen, D.; Lim, H.; Hirschmann, E.; Sundar, H., Massively parallel simulations of binary black hole intermediate-mass-ratio inspirals. SIAM J. Sci. Comput., 2, C97-C138 (2019) · Zbl 1416.83050
[46] Blanco, J. L.; Rai, P. K., nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN) with KD-trees (2014), https://github.com/jlblancoc/nanoflann
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.