×

Detection of scatterers using an XFEM-BEM level set solver based on the topological derivative. (English) Zbl 1530.65148

Summary: A numerical method is proposed for the solution of the inverse scattering problem. This problem consists of determining the location and shape of an unknown number of inclusions composed by a homogeneous material with known mechanical properties different that those of the surrounding medium. The information available to solve the inverse problem are measurements of the fundamental mechanical magnitude of the wave propagation problem. At the boundary of the scatterers, transmission conditions depending on the material properties are considered. For the solution of the forward problem, a coupled extended finite element method (XFEM)-boundary element method (BEM) is proposed, where the XFEM is used for the bounded region where the scatterers are supposed to be located, and the BEM is used for the exterior domain. The inverse problem is formulated as a topology optimization problem, and solved by means of a heuristic algorithm based on the topological derivative and a level set representation of the scatterers.
{© 2023 IOP Publishing Ltd}

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
74B10 Linear elasticity with initial stresses
74P10 Optimization of other properties in solid mechanics
74G75 Inverse problems in equilibrium solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] Colton, D.; Coyle, J.; Monk, P., SIAM Rev., 42, 369-414 (2000) · Zbl 0960.76081 · doi:10.1137/S0036144500367337
[2] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (Applied Mathematical Sciences vol 93) (2013), Springer · Zbl 1266.35121
[3] Colton, D.; Monk, P., IMA J. Appl. Math., 49, 163-84 (1992) · Zbl 0768.73016 · doi:10.1093/imamat/49.2.163
[4] Hohage, T.; Schormann, C., Inverse Problems, 14, 1207-27 (1998) · Zbl 0913.35152 · doi:10.1088/0266-5611/14/5/008
[5] Litman, A.; Lesselier, D.; Santosa, F., Inverse Problems, 14, 685-706 (1998) · Zbl 0912.35158 · doi:10.1088/0266-5611/14/3/018
[6] Novotny, A. A.; Sokołowski, J., Topological Derivatives in Shape Optimization (Interaction of Mechanics and Mathematics) (2013), Springer · Zbl 1276.35002
[7] Novotny, A. A.; Sokołowski, J.; Żochowski, A., Applications of the Topological Derivative Method (Studies in Systems, Decision and Control vol 188) (2019), Springer · Zbl 1460.74001
[8] Amstutz, S., Eng. Comput., 39, 3-33 (2022) · doi:10.1108/EC-07-2021-0433
[9] Feijoo, G. R., Inverse Problems, 20, 1819-40 (2004) · Zbl 1077.78010 · doi:10.1088/0266-5611/20/6/008
[10] Guzina, B. B.; Bonnet, M., Inverse Problems, 22, 1761-85 (2006) · Zbl 1105.76055 · doi:10.1088/0266-5611/22/5/014
[11] Rapún, M. L., Inverse Problems, 36 (2020) · Zbl 1448.35408 · doi:10.1088/1361-6420/ab98a2
[12] Le Louër, F.; Rapún, M. L., Eng. Comput., 39, 232-71 (2022) · doi:10.1108/EC-06-2021-0327
[13] Carpio, A.; Rapún, M. L., Topological derivatives for shape reconstruction, Inverse Problems and Imaging (Lecture Notes in Mathematics vol 1943), pp 85-133 (2008), Springer · Zbl 1144.65307
[14] Carpio, A.; Rapún, M. L., Inverse Problems, 24 (2008) · Zbl 1153.35401 · doi:10.1088/0266-5611/24/4/045014
[15] Carpio, A.; Rapún, M. L., Inverse Problems Sci. Eng., 18, 35-50 (2010) · Zbl 1182.65166 · doi:10.1080/17415970903233622
[16] Le Louër, F.; Rapún, M. L., Eng. Comput., 39, 272-312 (2022) · doi:10.1108/EC-06-2021-0341
[17] Le Louër, F.; Rapún, M. L., J. Math. Imaging Vis., 64, 321-40 (2022) · Zbl 07510346 · doi:10.1007/s10851-022-01069-z
[18] Moës, N.; Dolbow, J.; Belytschko, T., Int. J. Numer. Methods Eng., 46, 131-50 (1999) · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[19] Sukumar, N.; Chopp, D. L.; Moës, N.; Belytschko, T., Comput. Methods Appl. Mech. Eng., 190, 6183-200 (2001) · Zbl 1029.74049 · doi:10.1016/S0045-7825(01)00215-8
[20] Belytschko, T.; Xiao, S. P.; Parimi, C., Int. J. Numer. Methods Eng., 57, 1177-96 (2003) · Zbl 1062.74583 · doi:10.1002/nme.824
[21] Wei, P.; Wang, M. Y.; Xing, X., Comput.-Aided Des., 42, 708-19 (2010) · doi:10.1016/j.cad.2009.12.001
[22] Li, L.; Wang, M. Y.; Wei, P., Front. Mech. Eng., 7, 335-56 (2012) · doi:10.1007/s11465-012-0351-2
[23] Guo, X.; Zhang, W.; Zhong, W., Comput. Methods Appl. Mech. Eng., 268, 632-55 (2014) · Zbl 1295.74081 · doi:10.1016/j.cma.2013.10.003
[24] Abdi, M.; Wildman, R.; Ashcroft, I., Eng. Optim., 46, 628-47 (2014) · doi:10.1080/0305215X.2013.791815
[25] Geiss, M. J.; Barrera, J. L.; Boddeti, N.; Maute, K., Front. Mech. Eng., 14, 153-70 (2019) · doi:10.1007/s11465-019-0533-2
[26] van den Boom, S. J.; Zhang, J.; van Keulen, F.; Aragón, A. M., Struct. Multidiscip. Optim., 63, 1-20 (2021) · doi:10.1007/s00158-020-02682-5
[27] Chatzi, E. N.; Hiriyur, B.; Waisman, H.; Smyth, A. W., Comput. Struct., 89, 556-70 (2011) · doi:10.1016/j.compstruc.2010.12.014
[28] Jung, J.; Jeong, C.; Taciroglu, E., Comput. Methods Appl. Mech. Eng., 259, 50-63 (2013) · Zbl 1286.74056 · doi:10.1016/j.cma.2013.03.001
[29] Sharma, A.; Maute, K., Struct. Multidiscip. Optim., 57, 17-38 (2018) · doi:10.1007/s00158-017-1833-y
[30] Agathos, K.; Chatzi, E.; Bordas, S. P A., Comput. Mech., 62, 835-52 (2018) · Zbl 1459.74170 · doi:10.1007/s00466-017-1532-y
[31] Alalade, M.; Nguyen-Tuan, L.; Wuttke, F.; Lahmer, T., Int. J. Mech. Mater. Des., 14, 157-75 (2018) · doi:10.1007/s10999-017-9367-4
[32] Du, C.; Zhao, W.; Jiang, S.; Deng, X., Comput. Methods Appl. Mech. Eng., 365 (2020) · Zbl 1442.74224 · doi:10.1016/j.cma.2020.112995
[33] Ma, C.; Yu, T.; Lich, L. V.; Thanh-Tung, T.; Bui, T. Q., Eur. J. Mech. A Solids, 82 (2020) · Zbl 1475.74118 · doi:10.1016/j.euromechsol.2020.103980
[34] Ammari, H.; Khelifi, A., J. Math. Pures Appl., 82, 749-842 (2003) · Zbl 1033.78006 · doi:10.1016/S0021-7824(03)00033-3
[35] Ammari, H.; Iakovleva, E.; Moskow, S., SIAM J. Math. Anal., 34, 882-900 (2003) · Zbl 1038.78012 · doi:10.1137/S0036141001392785
[36] Graff, K. F., Wave Motion in Elastic Solids (1975), Dover Publications · Zbl 0314.73022
[37] Rapún, M. L.; Sayas, F. J., J. Comput. Appl. Math., 214, 238-58 (2008) · Zbl 1148.65091 · doi:10.1016/j.cam.2007.02.028
[38] Sokołowski, J.; Zolésio, J. P., Introduction to Shape Optimization. Shape Sensitivity Analysis (Springer Series in Computational Mathematics vol 16) (1992), Springer · Zbl 0765.76070
[39] Walker, S. W., The Shapes of Things: A Practical Guide to Differential Geometry and the Shape Derivative (Advances in Design and Control vol 28) (2015), Society for Industrial and Applied Mathematics (SIAM) · Zbl 1336.53001
[40] Henrot, A.; Pierre, M., Shape Variation and Optimization. A Geometrical Analysis (EMS Tracts in Mathematics vol 28) (2018), European Mathematical Society (EMS) · Zbl 1392.49001
[41] Hettlich, F., Inverse Problems, 11, 371-82 (1995) · Zbl 0821.35147 · doi:10.1088/0266-5611/11/2/007
[42] Canelas, AAbreu, A IRoche, J R2022On the use of medium frequencies in the solution of the inverse scattering problem workingpaper or preprint(available at: https://hal.archives-ouvertes.fr/hal-03842888)
[43] Colton, D. L.; Kress, R., Integral equation Methods in Scattering Theory (Pure and Applied Mathematics) (1983), Wiley · Zbl 0522.35001
[44] Mascotto, L.; Melenk, J. M.; Perugia, I.; Rieder, A., Comput. Math. Appl., 80, 2351-78 (2020) · Zbl 1524.65846 · doi:10.1016/j.camwa.2020.04.014
[45] Stephan, E. P.; Stein, E.; De Borst, R.; Hughes, T. J R., Coupling of boundary element methods and finite element methods, Encyclopedia of Computational Mechanics. Vol. 1: Fundamentals (Lecture Notes in Mathematics), pp 375-412 (2004), Wiley
[46] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J. F., Comput. Methods Appl. Mech. Eng., 192, 3163-77 (2003) · Zbl 1054.74056 · doi:10.1016/S0045-7825(03)00346-3
[47] Amstutz, S.; Andrä, H., J. Comput. Phys., 216, 573-88 (2006) · Zbl 1097.65070 · doi:10.1016/j.jcp.2005.12.015
[48] Kimmel, R.; Sethian, J. A., Proc. Natl Acad. Sci. USA, 95, 8431-5 (1998) · Zbl 0908.65049 · doi:10.1073/pnas.95.15.8431
[49] Luenberger, D. G.; Ye, Y., Linear and nonlinear programming, (International Series in Operations Research & Management Science, vol 116 (2008), Springer · Zbl 1207.90003
[50] Garcia, D., Comput. Stat. Data Anal., 54, 1167-78 (2010) · Zbl 1277.62036 · doi:10.1016/j.csda.2009.09.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.