×

Optimal shape design in biomimetics based on homogenization and adaptivity. (English) Zbl 1106.74390

Summary: Optimal shape design of microstructured materials has recently attracted a great deal of attention in materials science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The paper is devoted to the shape optimization of new biomorphic microcellular silicon carbide ceramics produced from natural wood by biotemplating. This is a novel technology in the field of biomimetics which features a material synthesis from biologically grown materials into ceramic composites by fast high-temperature processing. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimators.

MSC:

74Q05 Homogenization in equilibrium problems of solid mechanics
90C30 Nonlinear programming
65K10 Numerical optimization and variational techniques
49Q10 Optimization of shapes other than minimal surfaces
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] N. Bakhvalov, G. Panasenko, Averaging Processes in Periodic Media, Nauka, Moscow, 1984.; N. Bakhvalov, G. Panasenko, Averaging Processes in Periodic Media, Nauka, Moscow, 1984. · Zbl 0607.73009
[2] M.P. Bendsøe, Optimization of Structural Topology, Shape, and Material, Springer, Berlin, Germany, 1995.; M.P. Bendsøe, Optimization of Structural Topology, Shape, and Material, Springer, Berlin, Germany, 1995. · Zbl 0822.73001
[3] A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Elsevier, Amsterdam, 1978.; A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Elsevier, Amsterdam, 1978. · Zbl 0404.35001
[4] A.V. Fiacco, G.P. McCormick, Nonlinear Programming. Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968 (republished by SIAM, Philadelphia, Pennsylvania, 1990).; A.V. Fiacco, G.P. McCormick, Nonlinear Programming. Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968 (republished by SIAM, Philadelphia, Pennsylvania, 1990). · Zbl 0193.18805
[5] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994.; V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, 1994. · Zbl 0801.35001
[6] J. Sokolowski, J.-P. Zolesio, Introduction to shape optimization, Springer Series in Computational Mathematics, vol. 16, Springer, 1992.; J. Sokolowski, J.-P. Zolesio, Introduction to shape optimization, Springer Series in Computational Mathematics, vol. 16, Springer, 1992. · Zbl 0761.73003
[7] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197-224 (1988) · Zbl 0671.73065
[8] Byrd, R. H.; Hribar, M. E.; Nocedal, J., An interior point algorithm for large scale nonlinear programming, SIAM J. Optim., 9, 4, 877-900 (1999) · Zbl 0957.65057
[9] Byrne, C. E.; Nagle, D. C., Carbonization of wood for advanced materials applications, Carbon, 35, 2, 259-266 (1997)
[10] Carstensen, C.; Funken, S. A., Averaging technique for FE—a posteriori error control in elasticity. Part I. Conforming FEM, Comput. Methods Appl. Mech. Eng., 190, 2483-2498 (2001) · Zbl 0981.74063
[11] El-Bakry, A. S.; Tapia, R. A.; Tsuchiya, T.; Zhang, Y., On the formulation and theory of the Newton interior-point method for nonlinear programming, J. Optim. Theory Appl., 89, 507-541 (1996) · Zbl 0851.90115
[12] K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Introduction to adaptive methods for differential equations, Acta Num. (1995), 105-158.; K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Introduction to adaptive methods for differential equations, Acta Num. (1995), 105-158. · Zbl 0829.65122
[13] Forsgren, A.; Gill, P. E.; Wright, M. H., Interior methods for nonlinear optimization, SIAM Rev., 44, 4, 525-597 (2002) · Zbl 1028.90060
[14] D.M. Gay, M.L. Overton, M.H. Wright, A primal-dual interior method for nonconvex nonlinear programming, in: Y. Yuan (Eds.), Advances in Nonlinear Programming, Kluwer, Dordrecht, 1998, pp. 31-56.; D.M. Gay, M.L. Overton, M.H. Wright, A primal-dual interior method for nonconvex nonlinear programming, in: Y. Yuan (Eds.), Advances in Nonlinear Programming, Kluwer, Dordrecht, 1998, pp. 31-56. · Zbl 0908.90236
[15] Greil, P.; Lifka, T.; Kaindl, A., Biomorphic cellular silicon carbide ceramics from wood. I. Processing and microstructure. II. Mechanical properties, J. Eur. Ceram. Soc., 18, 1961-1973 (1998), and 1975-1983
[16] Hoppe, R. H.W.; Petrova, S. I.; Schulz, V., Primal-dual Newton-type interior-point method for topology optimization, J. Optim. Theory Appl., 114, 3, 545-571 (2002) · Zbl 1026.90108
[17] Kikuchi, N.; Chung, K. Y.; Torigaki, T.; Taylor, J. E., Adaptive finite element methods for shape optimization of linearly elastic structures, Comput. Methods Appl. Mech. Eng., 57, 67-91 (1986) · Zbl 0578.73081
[18] Ota, T.; Takahashi, M.; Hibi, T.; Ozawa, M.; Suzuki, S.; Hikichi, Y.; Suzuki, H., Biomimetic process for producing SiC wood, J. Am. Ceram. Soc., 78, 3409-3411 (1995)
[19] Sieber, H.; Hoffmann, C.; Kaindl, A.; Greil, P., Biomorphic cellular ceramics, Adv. Eng. Mater., 2, 105-109 (2000)
[20] Suzuki, K.; Kikuchi, N., A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Eng., 93, 291-318 (1991) · Zbl 0850.73195
[21] Wittum, G., On the convergence of multigrid methods with transforming smoothers. Theory with applications to the Navier-Stokes equations, Num. Math., 57, 15-38 (1989) · Zbl 0698.65061
[22] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Num. Methods Eng., 24, 337-357 (1987) · Zbl 0602.73063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.