×

Elastodynamics on graphs-wave propagation on networks of plates. (English) Zbl 1407.74058

Summary: We consider the wave dynamics on networks of plates coupled along 1D joints. This set-up can be mapped onto an extension of wave graph systems studied in, for example, quantum graph theory. In the elastic case, different mode-types (flexural, longitudinal and shear waves) propagate in each plate and do so at different wave speeds. The flexural (or bending) modes are described in terms of fourth order equations introducing an always evanescent wave component into the system. Waves encounter plate intersections and can be transmitted, reflected or mode converted. The intersection or vertex scattering matrices mix different waves which can be propagating (open) and evanescent (closed). The local scattering matrices and the global transfer operator are no longer unitary; the consequences of this non-unitarity on secular equations and the Weyl law will be discussed. The findings are of relevance to describing complex engineering structures such as networks of beams and plates.

MSC:

74K20 Plates
74K30 Junctions
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74J05 Linear waves in solid mechanics
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
81U05 \(2\)-body potential quantum scattering theory
81Q50 Quantum chaos
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Kottos, T.; Smilansky, U., Phys. Rev. Lett., 79, 4794, (1997) · doi:10.1103/PhysRevLett.79.4794
[2] Kottos, T.; Smilansky, U., Ann. Phys., 274, 76-124, (1999) · Zbl 1036.81014 · doi:10.1006/aphy.1999.5904
[3] Gnutzmann, S.; Smilansky, U., Adv. Phys., 55, 527-625, (2006) · doi:10.1080/00018730600908042
[4] Tanner, G., J. Sound Vib., 320, 1023-1038, (2009) · doi:10.1016/j.jsv.2008.08.032
[5] Chappell, D. J.; Tanner, G.; Löchel, D.; Søndergaard, N., Proc. R. Soc. A, 469, 20130153, (2013) · Zbl 1371.76105 · doi:10.1098/rspa.2013.0153
[6] Chappell, D.; Löchel, D.; Søndergaard, N.; Tanner, G., Wave Motion, 51, 589-597, (2014) · Zbl 1456.76006 · doi:10.1016/j.wavemoti.2014.01.004
[7] Mace, B. R.; Duhamel, D.; Brennan, M. J.; Hinke, L., J. Acoust. Soc. Am., 117, 2835-2843, (2005) · doi:10.1121/1.1887126
[8] Renno, J. M.; Mace, B. R., Wave Motion, 51, 566-580, (2014) · Zbl 1456.74058 · doi:10.1016/j.wavemoti.2013.09.001
[9] Mitrou, G.; Ferguson, N.; Renno, J. M., J. Sound Vib., 389, 484-501, (2017) · doi:10.1016/j.jsv.2016.09.032
[10] Bolte, J.; Harrison, J., J. Phys. A: Math. Gen., 36, 2747-2769, (2003) · Zbl 1038.05057 · doi:10.1088/0305-4470/36/11/307
[11] Tanner, G., J. Phys. A: Math. Gen., 33, 3567, (2000) · Zbl 0948.82016 · doi:10.1088/0305-4470/33/18/304
[12] Tanner, G., J. Phys. A: Math. Gen., 34, 8485, (2001) · Zbl 0995.82031 · doi:10.1088/0305-4470/34/41/307
[13] Mehmeti, F.; Von Below, J.; Nicaise, S., Partial Differential Equations Multistructures, (2001), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 0960.00045
[14] Dekoninck, B.; Nicaise, S., Linear Algebr. Appl., 314, 165-189, (2000) · Zbl 0979.74026 · doi:10.1016/S0024-3795(00)00118-X
[15] Landau, L.; Lifshitz, E.; Kosevich, A.; Pitaevskii, L., Theory of elasticity, Course of Theoretical Physics, (1986), Portsmouth, NH: Heinemann, Portsmouth, NH
[16] Post, O., J. Phys. A: Math. Gen., 38, 4917, (2005) · Zbl 1072.81019 · doi:10.1088/0305-4470/38/22/015
[17] Langley, R.; Heron, K., J. Sound Vib., 143, 241-253, (1990) · doi:10.1016/0022-460X(90)90953-W
[18] Bobrovnitskii, Y. I., J. Sound Vib., 152, 175-176, (1992) · doi:10.1016/0022-460X(92)90073-7
[19] Rouvinez, C.; Smilansky, U., J. Phys. A: Math. Gen., 28, 77, (1995) · Zbl 0868.58040 · doi:10.1088/0305-4470/28/1/014
[20] Schanz, H.; Smilansky, U., Chaos Solitons Fractals, 5, 1289-1309, (1995) · Zbl 0907.58023 · doi:10.1016/0960-0779(94)E0066-X
[21] Creagh, S. C.; Hamdin, H. B.; Tanner, G., J. Phys. A: Math. Theor., 46, (2013) · Zbl 1276.81132 · doi:10.1088/1751-8113/46/43/435203
[22] Bogomolny, E. B., Nonlinearity, 5, 805, (1992) · Zbl 0749.35035 · doi:10.1088/0951-7715/5/4/001
[23] Le Bot, A., Foundation of Statistical Energy Analysis in Vibroacoustics, (2015), Oxford: Oxford University Press, Oxford · Zbl 1314.74003
[24] Carminati, R.; Sáenz, J. J.; Greffet, J. J.; Nieto-Vesperinas, M., Phys. Rev. A, 62, (2000) · doi:10.1103/PhysRevA.62.012712
[25] Prosen, T., Physica D, 91, 244-277, (1996) · Zbl 0890.58022 · doi:10.1016/0167-2789(95)00262-6
[26] Brewer, C. S., Wave propagation and complexity: a transfer operator approach, PhD Thesis, (2018)
[27] Craik, R.; Bosmans, I.; Cabos, C.; Heron, K.; Sarradj, E.; Steel, J.; Vermeir, G., J. Sound Vib., 272, 1086-1096, (2004) · doi:10.1016/j.jsv.2003.07.011
[28] Zernov, V.; Kaplunov, J., Proc. R. Soc. A, 464, 301-318, (2008) · Zbl 1139.74029 · doi:10.1098/rspa.2007.0159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.