×

A minimal integrity basis for the elasticity tensor. (English) Zbl 1372.74013

Summary: We definitively solve the old problem of finding a minimal integrity basis of polynomial invariants of the fourth-order elasticity tensor \(\mathbf{C}\). Decomposing \(\mathbf{C}\) into its \(\mathrm{SO}(3)\)-irreducible components we reduce this problem to finding joint invariants of a triplet \((\mathbf{a}, \mathbf{b}, \mathbf{D})\), where \(\mathbf{a}\) and \(\mathbf{b}\) are second-order harmonic tensors, and \(\mathbf{D}\) is a fourth-order harmonic tensor. Combining theorems of classical invariant theory and formal computations, a minimal integrity basis of 297 polynomial invariants for the elasticity tensor is obtained for the first time.

MSC:

74B10 Linear elasticity with initial stresses
11D04 Linear Diophantine equations
15A72 Vector and tensor algebra, theory of invariants

Software:

Normaliz

References:

[1] Abud M., Sartori G.: The geometry of spontaneous symmetry breaking. Ann. Phys. 150(2), 307-372 (1983) · Zbl 0529.58028 · doi:10.1016/0003-4916(83)90017-9
[2] Ahmad F.: Invariants and structural invariants of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 55(4), 597-606 (2002) · Zbl 1068.74006 · doi:10.1093/qjmam/55.4.597
[3] Annin B. D., Ostrosablin N. I.: Anisotropy of the elastic properties of materials. Prikl. Mekh. Tekhn. Fiz. 49(6), 131-151 (2008)
[4] Ashman R., Cowin S., Van Buskirk W., Rice J.: A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech. 17(5), 349-361 (1984) · doi:10.1016/0021-9290(84)90029-0
[5] Auffray,N., Kolev, B., Olive, M.: Handbook of bidimensional tensors. Part I: Harmonic decomposition and symmetry classes. Math. Mech. Solids, 2016. doi:10.1177/1081286516649017 · Zbl 1391.74020
[6] Auffray N., Kolev B., Petitot M.: On anisotropic polynomial relations for the elasticity tensor. J. Elast. 115(1), 77-103 (2014) · Zbl 1410.74004 · doi:10.1007/s10659-013-9448-z
[7] AuffrayN. Ropars P.: Invariant-based reconstruction of bidimensional elasticity tensors. Int. J. Solids Struct. 87, 183-193 (2016) · doi:10.1016/j.ijsolstr.2016.02.013
[8] Backus G.: A geometrical picture of anisotropic elastic tensors. Rev. Geophys. 8(3), 633-671 (1970) · doi:10.1029/RG008i003p00633
[9] Baerheim R.: Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 46(3), 391-418 (1993) · Zbl 0783.73010 · doi:10.1093/qjmam/46.3.391
[10] Bedratyuk L.: On complete system of covariants for the binary form of degree 8. Mat. Visn. Nauk. Tov. Im. Shevchenka 5, 11-22 (2008) · Zbl 1199.13005
[11] Bedratyuk L.: A complete minimal system of covariants for the binary form of degree 7. J. Symb. Comput. 44(2), 211-220 (2009) · Zbl 1221.13006 · doi:10.1016/j.jsc.2008.10.001
[12] Betten, J.: Irreducible invariants of fourth-order tensors. Math. Model. 8, 29-33, 1987. Mathematical modelling in science and technology (Berkeley, CA, 1985) · Zbl 0634.73006
[13] Betten, J., Helisch, W.: Integrity bases for a fourth-rank tensor. In: IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, pp 37-42. Springer, 1995 · Zbl 0866.15016
[14] Blinowski A., Ostrowska-Maciejewska J., Rychlewski J.: Two-dimensional Hooke’s tensors—isotropic decomposition, effective symmetry criteria. Arch. Mech. (Arch. Mech. Stos.) 48(2), 325-345 (1996) · Zbl 0848.73010
[15] Boehler J. P.: On irreducible representations for isotropic scalar functions. Z. Angew. Math. Mech. 57(6), 323-327 (1977) · Zbl 0362.15019 · doi:10.1002/zamm.19770570608
[16] Boehler J.-P.: Lois de comportement anisotrope des milieux continus. J. Mécanique 17(2), 153-190 (1978) · Zbl 0401.73005
[17] Boehler, J.-P.: Application of Tensor Functions in Solid Mechanics. CISM Courses and Lectures. Springer, Wien, 1987 · Zbl 0657.73001
[18] Boehler J.-P., Kirillov A. A. Jr., Onat E. T.: On the polynomial invariants of the elasticity tensor. J. Elast. 34(2), 97-110 (1994) · Zbl 0808.73007 · doi:10.1007/BF00041187
[19] Bóna A., Bucataru I., Slawinski M.: Characterization of elasticity-tensor symmetries using SU(2). J. Elast. 75(3), 267-289 (2004) · Zbl 1081.74005 · doi:10.1007/s10659-004-7192-0
[20] Bóna A., Bucataru I., Slawinski M.: Space of SO(3)-orbits of elasticity tensors. Arch. Mech. 60(2), 123-138 (2008) · Zbl 1162.74322
[21] Brouwer, A. E.: Invariants of binary forms, 2015. http://www.win.tue.nl/ aeb/math/invar.html. · Zbl 1189.13005
[22] Brouwer A. E., Popoviciu M.: The invariants of the binary decimic. J. Symb. Comput. 45(8), 837-843 (2010) · Zbl 1192.13005 · doi:10.1016/j.jsc.2010.03.002
[23] Brouwer A. E., Popoviciu M.: The invariants of the binary nonic. J. Symb. Comput. 45(6), 709-720 (2010) · Zbl 1189.13005 · doi:10.1016/j.jsc.2010.03.003
[24] Bruns W., Ichim B.: Normaliz: algorithms for affine monoids and rational cones. J. Algebra 324(5), 1098-1113 (2010) · Zbl 1203.13033 · doi:10.1016/j.jalgebra.2010.01.031
[25] Cartan, É.: The Theory of Spinors. Dover Publications, Inc., New York, 1981. With a foreword by Raymond Streater, A reprint of the 1966 English translation, Dover Books on Advanced Mathematics · Zbl 0489.53010
[26] Cayley A.: A seventh memoir on quantics. Philos. Trans. R. Soc. Lond. 151, 277-292 (1861) · doi:10.1098/rstl.1861.0015
[27] Cowin S. C.: Properties of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math. 42, 249-266 (1989) · Zbl 0682.73011 · doi:10.1093/qjmam/42.2.249
[28] Cowin S. C.: Continuum Mechanics of Anisotropic Materials. Springer, New York (2013) · Zbl 1269.74001 · doi:10.1007/978-1-4614-5025-2
[29] Cowin, Mehrabadi, M.: On the identification of material symmetry for anisotropic elastic materials. Q. J. Mech. Appl. Math. 40, 451-476, 1987 · Zbl 0625.73014
[30] Cröni, H. L.: Zur Berechnung von Kovarianten von Quantiken. PhD thesis, 2002.
[31] Derksen H.: Computation of invariants for reductive groups. Adv. Math. 141(2), 366-384 (1999) · Zbl 0927.13007 · doi:10.1006/aima.1998.1787
[32] Derksen H., Kemper G.: Computing invariants of algebraic groups in arbitrary characteristic. Adv. Math., 217(5), 2089-2129 (2008) · Zbl 1138.13003 · doi:10.1016/j.aim.2007.08.016
[33] Derksen, H., Kemper, G.: Computational Invariant Theory, volume 130 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, enlarged edition, 2015. With two appendices by Vladimir L. Popov, and an addendum by Norbert A’Campo and Popov, Invariant Theory and Algebraic Transformation Groups, VIII · Zbl 1332.13001
[34] Desmorat B., Desmorat R.: Second order tensorial framework for 2D medium with open and closed cracks. Eur. J. Mech. A Solids 58, 262-277 (2016) · Zbl 1406.74531 · doi:10.1016/j.euromechsol.2016.02.004
[35] Forte S., Vianello M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81-108 (1996) · Zbl 0876.73008 · doi:10.1007/BF00042505
[36] Forte S., Vianello M.: Restricted invariants on the space of elasticity tensors. Math. Mech. Solids 11(1), 48-82 (2006) · Zbl 1092.74004 · doi:10.1177/1081286505046483
[37] Forte S., Vianello M.: A unified approach to invariants of plane elasticity tensors. Meccanica 49(9), 2001-2012 (2014) · Zbl 1299.74023 · doi:10.1007/s11012-014-9916-y
[38] François D., Pineau A., Zaoui A.: Mechanical Behaviour of Materials. Springer, New York (1998) · Zbl 0932.74002
[39] François M.: A damage model based on Kelvin eigentensors and Curie principle. Mech. Mater. 44, 23-34 (2012) · doi:10.1016/j.mechmat.2011.07.017
[40] Golubitsky, M., Stewart, I., Schaeffer, D. G.: Singularities and Groups in Bifurcation Theory. Vol. II, Volume 69 of Applied Mathematical Sciences. Springer, New York, 1988 · Zbl 0691.58003
[41] Goodman, R., Wallach, N. R.: Symmetry, Representations, and Invariants, volume 255 of Graduate Texts in Mathematics. Springer, Dordrecht, 2009 · Zbl 1173.22001
[42] Gordan, P.: Beweis, dass jede covariante und invariante einer bineren form eine ganze function mit numerischen coefficienten einer endlichen anzahl solcher formen ist. J. Reine Angewandte Math. 69, 323-354, 1868
[43] Grace, J. H., Young, A.: The Algebra of Invariants. Cambridge Library Collection. Cambridge University Press, Cambridge, 2010. Reprint of the 1903 original · Zbl 1221.13006
[44] Grédiac M.: On the direct determination of invariant parameters governing the bending of anisotropic plates. Int. J. Solids Struct. 33(27), 3969-3982 (1996) · Zbl 0920.73098 · doi:10.1016/0020-7683(95)00220-0
[45] Gurevich, G. B.: Foundations of the Theory of Algebraic Invariants. P. Noordhoff Ltd., Groningen, 1964 · Zbl 0128.24601
[46] Gurtin, M.: The linear theory of elasticity. In: Linear Theories of Elasticity and Thermoelasticity, pp. 1-295. Springer, New York, 1973
[47] Hahn H.: A derivation of invariants of fourth rank tensors. J. Compos. Mater. 8(1), 2-14 (1974) · doi:10.1177/002199837400800101
[48] He Q.-C.: Characterization of the anisotropic materials capable of exhibiting an isotropic young or shear or area modulus. Int. J. Eng. Sci. 42, 2107-2118 (2004) · Zbl 1211.74049 · doi:10.1016/j.ijengsci.2004.04.009
[49] Helbig K., Thomsen L.: 75-plus years of anisotropy in exploration and reservoir seismics: a historical review of concepts and methods. Geophysics 70(6), 9-23 (2005) · doi:10.1190/1.2122407
[50] Hilbert D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993) · Zbl 0801.13001
[51] Hobson E. W.: The Theory of Spherical and Ellipsoidal Harmonics. Chelsea Publishing Company, New York (1955) · Zbl 0004.21001
[52] Ihrig E., Golubitsky M.: Pattern selection with O(3) symmetry. Phys. D 13(1-2), 1-33 (1984) · Zbl 0581.22021 · doi:10.1016/0167-2789(84)90268-9
[53] Itin Y.: Quadratic invariants of the elasticity tensor. J. Elast. 125(1), 1-24 (2015)
[54] Kraft, H., Procesi, C.: Classical Invariant Theory, a Primer. Lectures notes avaiable at http://www.math.unibas.ch/ kraft/Papers/KP-Primer.pdf, 2000
[55] Lemaitre J., Chaboche J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994) · Zbl 0743.73002
[56] Lercier, R., Olive, M.: Covariant algebra of the binary nonic and the binary decimic. In: Bassa, A., Couvreur, A., Kohel, D. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory, Contemporary Mathematics, vol. 686. American Mathematical Society, 2017. doi:10.1090/conm/686 · Zbl 1366.13006
[57] Lercier R., Ritzenthaler C.: Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. J. Algebra 372, 595-636 (2012) · Zbl 1276.14088 · doi:10.1016/j.jalgebra.2012.07.054
[58] Liu S.: On representations of anisotropic invariants. Int. J. Eng. Sci. 20, 1099-1109 (1982) · Zbl 0504.73001 · doi:10.1016/0020-7225(82)90092-1
[59] Luque, J.-G.: Invariants des hypermatrices. http://tel.archives-ouvertes.fr/tel-00250312, 2007
[60] Mehrabadi M. M., Cowin S. C.: Eigentensors of linear anisotropic elastic materials. Q. J. Mech. Appl. Math. 43(1), 15-41 (1990) · Zbl 0698.73002 · doi:10.1093/qjmam/43.1.15
[61] Milton G.: The Theory of Composites. Cambridge University Press, Cambridge (2002) · Zbl 0993.74002 · doi:10.1017/CBO9780511613357
[62] Norris A. N.: Quadratic invariants of elastic moduli. Q. J. Mech. Appl. Math. 60(3), 367-389 (2007) · Zbl 1119.74003 · doi:10.1093/qjmam/hbm007
[63] Olive, M.: Géométrie des espaces de tenseurs : une approche effective appliquée à la mécanique des milieux continus. PhD thesis, University of Aix-Marseille, Nov. 2014
[64] Olive, M.: About Gordan’s algorithm for binary forms. Found. Comput. Math. 2016. doi:10.1007/s10208-016-9324-x · Zbl 1408.13017
[65] Olver, P. J.: Classical Invariant Theory, Volume 44 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999 · Zbl 0971.13004
[66] Onat E.: Effective properties of elastic materials that contain penny shaped voids. Int. J. Eng. Sci. 22(8), 1013-1021 (1984) · Zbl 0564.73089 · doi:10.1016/0020-7225(84)90102-2
[67] Ostrosablin N. I.: On invariants of a fourth-rank tensor of elasticity moduli. Sib. Zh. Ind. Mat. 1(1L), 155-163 (1998) · Zbl 0920.73041
[68] Pessard E., Morel F., Morel A.: The anisotropic fatigue behavior of forged steel. Adv. Eng. Mater. 11(9), 732-735 (2009) · doi:10.1002/adem.200900040
[69] Pierce J. F.: Representations for transversely hemitropic and transversely isotropic stress-strain relations. J. Elast. 37(3), 243-280 (1995) · Zbl 0824.73003 · doi:10.1007/BF00041210
[70] Rivlin R.: Further remarks on the stress-deformation relation for isotropic materials. J. Ration. Mech. Anal. 4, 681-701 (1955) · Zbl 0064.42101
[71] Rosi G., Auffray N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120-134 (2016) · Zbl 1469.74030 · doi:10.1016/j.wavemoti.2016.01.009
[72] Rosi G., Nguyen V.-H., Naili S.: Numerical investigations of ultrasound wave propagating in long bones using a poroelastic model. Math. Mech. Solids 21(1), 119-133 (2016) · Zbl 1338.74057 · doi:10.1177/1081286515582889
[73] Rychlewski J.: On Hooke’s law. J. Appl. Math. Mech. 48(3), 303-314 (1984) · Zbl 0581.73015 · doi:10.1016/0021-8928(84)90137-0
[74] Salençon J.: Handbook of Continuum Mechanics: General Concepts Thermoelasticity. Springer, New York (2012) · Zbl 0981.74001
[75] Shioda T.: On the graded ring of invariants of binary octavics. Am. J. Math. 89, 1022-1046 (1967) · Zbl 0188.53304 · doi:10.2307/2373415
[76] Smith G.: On isotropic integrity bases. Arch. Ration. Mech. Anal. 18(4), 282-292 (1965) · Zbl 0129.00902 · doi:10.1007/BF00251667
[77] Smith G.: On isotropic integrity bases. Arch. Ration. Mech. Anal. 18(4), 282-292 (1965) · Zbl 0129.00902 · doi:10.1007/BF00251667
[78] Smith G.: On a fundamental error in two papers of C.C. Wang On representations for isotropic functions, part I and II. Arch. Rational Mech. Anal. 36, 161-165 (1970) · Zbl 0327.15029 · doi:10.1007/BF00272240
[79] Smith G.: On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. Int. J. Eng. Sci., 9, 899-916 (1971) · Zbl 0233.15021 · doi:10.1016/0020-7225(71)90023-1
[80] Smith G.: Constitutive Equations for Anisotropic and Isotropic Materials. North-Holland, Amsterdam (1994)
[81] Smith G. F., Bao G.: Isotropic invariants of traceless symmetric tensors of orders three and four. Int. J. Eng. Sci. 35(15), 1457-1462 (1997) · Zbl 0907.15019 · doi:10.1016/S0020-7225(97)00048-7
[82] Spencer A.: Part III. Theory of invariants. Continuum Phys. 1, 239-353 (1971)
[83] Spencer, A. J. M., Rivlin, R. S.: Finite integrity bases for five or fewer symmetric \[{3 \times 3}3\]×3 matrices. Arch. Ration. Mech. Anal. 2, 435-446, 1958/1959 · Zbl 0095.25102
[84] Spencer A. J. M., Rivlin R. S.: Isotropic integrity bases for vectors and second-order tensors. I. Arch. Ration. Mech. Anal. 9, 45-63 (1962) · Zbl 0118.25803 · doi:10.1007/BF00253332
[85] Sternberg S.: Group Theory and Physics. Cambridge University Press, Cambridge (1994) · Zbl 0816.53002
[86] Sturmfels, B.: Algorithms in invariant theory. In: Texts and Monographs in Symbolic Computation, 2nd ed. Springer, Vienna, 2008 · Zbl 1154.13003
[87] Thomson W. L. K.: On six principal strains of an elastic solid. Philos. Trans. R. Soc. Lond. 166, 495-498 (1856)
[88] Ting T. C. T.: Invariants of anisotropic elastic constants. Q. J. Mech. Appl. Math. 40(3), 431-448 (1987) · Zbl 0626.73009 · doi:10.1093/qjmam/40.3.431
[89] Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, pp. 93-104. Springer, 1982 · Zbl 0516.73015
[90] Vianello M.: An integrity basis for plane elasticity tensors. Arch. Mech. (Arch. Mech. Stos.) 49(1), 197-208 (1997) · Zbl 0876.73011
[91] von Gall.: Ueber das simultane Formensystem einer Form 2ter und 6ter Ordnung. Jahresbericht über das Gymnasium zu Lengo, 1874
[92] von Gall.: Ueber das vollständige System einer binären Form achter Ordnung. Math. Ann., 17(1), 139-152, 1880 · JFM 12.0093.02
[93] von Gall.: Das vollstandige formensystem der binaren form 7ter ordnung. Math. Ann. 31), 318-336, 1888 · JFM 20.0128.01
[94] Wang, C.-C.: A new representation theorem for isotropic functions: an answer to professor G.F. Smith’s criticism of my papers on representations for isotropic functions, part I. Arch. Ration. Mech. Anal. 36, 166-197, 1970 · Zbl 0327.15030
[95] Weyl, H.: The Classical Groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. Their invariants and representations, Fifteenth printing, Princeton Paperbacks · Zbl 0876.73008
[96] Wineman A., Pipkin A.: Material symmetry restrictions on constitutive equations. Arch. Ration. Mech. Anal. 17, 184-214 (1964) · Zbl 0126.40604 · doi:10.1007/BF00282437
[97] Xiao H.: On isotropic invariants of the elasticity tensor. J. Elast. 46(2), 115-149 (1997) · Zbl 0945.74526 · doi:10.1023/A:1007332319121
[98] Young A.: The irreducible concomitants of any number of binary quartics. Proc. Lond. Math. Soc. 1(1), 290-307 (1898) · JFM 30.0118.03 · doi:10.1112/plms/s1-30.1.290
[99] Zheng Q.-S.: Theory of representations for tensor functions—a unified invariant appr oach to constitutive equations. Appl. Mech. Rev. 47, 545-587 (1994) · doi:10.1115/1.3111066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.