×

Explicit arithmetic intersection theory and computation of Néron-Tate heights. (English) Zbl 1426.14006

Let \(A\) be an abelian variety defined over a global field \(K\) and \(c\) an ample symmetric divisor class on \(A\). The aim of the paper is the computation of the Néron-Tate height induced by \(c\) (a quadratic form on \(A(K)\)) \(\hat{h}_c(P)\) or, what is the same, the bilinear pairing \(\hat{h}_c(P,Q)\), see [A. Néron, Ann. Math. (2) 82, 249–331 (1965; Zbl 0163.15205)] and their application to the computation of the regulator of \(A\) and to give numerical evidence for the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the Cartan modular curve of level 13.
The paper restricts to the case \(A\) the Jacobian of a smooth projective geometrically connected curve \(C\), \(c\) twice the class of a symmetric theta divisor \(\theta\) and \(K=\mathbb{Q}\) (although “our algorithm can be generalized easily to work over general global fields”).
The algorithm takes advantage of an equality due to Faltings and Hriljac (Theorem 4.1): \(\hat{h}_{2\theta}([D],[E])=-\sum_{v\in M_K}\langle D,E\rangle_v\), where \(D,E\) are divisors of degree 0 on \(C\) without common component, \(M_K\) the set of places of \(K\) and \(\langle D,E\rangle_v\) the local Néron pairing at \(v\) (since \(K=Q\) \(v\) is a \(p\)-adic valuation or the archimedean one). In the case \(C\) a hyperelliptic curve that computation was already done by D. Holmes [J. Number Theory 132, No. 6, 1295–1305 (2012; Zbl 1239.14019)] and J. S. Müller [Math. Comput. 83, No. 285, 311–336 (2014; Zbl 1322.11074)].
Section 2 gives an algorithm to compute the non-archimedean local Néron pairings (in the authors words “our main contribution”) and Section 3 deals with the archimedean case.
Section 4 discusses the computation of \(\hat{h}_{2\theta}([D],[E])\) using Theorem 4.1 and in particular identifies a set of places outside which the local Néron pairing of \(D\) and \(E\) vanished.
Finally Section 5 provides examples of the implementation, using the package Magma, of the algorithm for several curves including the split Cartan modular curve of level 13; it finds the regulator up to an integral square factor giving numerical evidence that the BSD conjecture holds up to an integral square.

MSC:

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11G50 Heights
37P30 Height functions; Green functions; invariant measures in arithmetic and non-Archimedean dynamical systems
11G10 Abelian varieties of dimension \(> 1\)

Software:

Arb

References:

[1] Balakrishnan, Jennifer S.; Besser, Amnon, Computing local \(p\)-adic height pairings on hyperelliptic curves, Int. Math. Res. Not. IMRN, 11, 2405-2444 (2012) · Zbl 1284.11097 · doi:10.1093/imrn/rnr111
[2] Balakrishnan, Jennifer S.; Dogra, Netan; M\"uller, J. Steffen; Tuitman, Jan; Vonk, Jan, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2), 189, 3, 885-944 (2019) · Zbl 1469.14050
[3] Baran, Burcu, An exceptional isomorphism between modular curves of level 13, J. Number Theory, 145, 273-300 (2014) · Zbl 1300.11055 · doi:10.1016/j.jnt.2014.05.017
[4] Baran, Burcu, An exceptional isomorphism between level 13 modular curves via Torelli’s theorem, Math. Res. Lett., 21, 5, 919-936 (2014) · Zbl 1327.14120 · doi:10.4310/MRL.2014.v21.n5.a1
[5] van Bommel, Raymond, Numerical verification of the Birch and Swinnerton-Dyer conjecture for hyperelliptic curves of higher genus over \(\mathbb{Q}\) up to squares, to appear in Exp. Math. · Zbl 1469.11218 · doi:10.1080/10586458.2019.1592035
[6] Bruin, Nils; Poonen, Bjorn; Stoll, Michael, Generalized explicit descent and its application to curves of genus 3, Forum Math. Sigma, 4, e6, 80 pp. (2016) · Zbl 1408.11065 · doi:10.1017/fms.2016.1
[7] Coleman, Robert F.; Gross, Benedict H., \(p\)-adic heights on curves. Algebraic Number Theory, Adv. Stud. Pure Math. 17, 73-81 (1989), Academic Press, Boston, MA · Zbl 0758.14009
[8] DokchitserTim, Models of curves over DVRs, arXiv e-prints (2018)
[9] Faltings, Gerd, Calculus on arithmetic surfaces, Ann. of Math. (2), 119, 2, 387-424 (1984) · Zbl 0559.14005 · doi:10.2307/2007043
[10] Flynn, E. Victor; Lepr\'{e}vost, Franck; Schaefer, Edward F.; Stein, William A.; Stoll, Michael; Wetherell, Joseph L., Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp., 70, 236, 1675-1697 (2001) · Zbl 1020.11043 · doi:10.1090/S0025-5718-01-01320-5
[11] Flynn, E. V.; Smart, N. P., Canonical heights on the Jacobians of curves of genus \(2\) and the infinite descent, Acta Arith., 79, 4, 333-352 (1997) · Zbl 0895.11026 · doi:10.4064/aa-79-4-333-352
[12] Gross, Benedict H., Local heights on curves. Arithmetic Geometry, Storrs, Conn., 1984, 327-339 (1986), Springer, New York · Zbl 0605.14027
[13] Gross, Benedict H.; Zagier, Don B., Heegner points and derivatives of \(L\)-series, Invent. Math., 84, 2, 225-320 (1986) · Zbl 0608.14019 · doi:10.1007/BF01388809
[14] Hess, F., Computing Riemann-Roch spaces in algebraic function fields and related topics, J. Symbolic Comput., 33, 4, 425-445 (2002) · Zbl 1058.14071 · doi:10.1006/jsco.2001.0513
[15] Hindry, Marc; Silverman, Joseph H., Diophantine Geometry, Graduate Texts in Mathematics 201, xiv+558 pp. (2000), Springer-Verlag, New York · Zbl 0948.11023 · doi:10.1007/978-1-4612-1210-2
[16] Holmes, David, Computing N\'{e}ron-Tate heights of points on hyperelliptic Jacobians, J. Number Theory, 132, 6, 1295-1305 (2012) · Zbl 1239.14019 · doi:10.1016/j.jnt.2012.01.002
[17] Holmes, David, An Arakelov-theoretic approach to na\"{i}ve heights on hyperelliptic Jacobians, New York J. Math., 20, 927-957 (2014) · Zbl 1338.11059
[18] Hriljac, Paul, Heights and Arakelov’s intersection theory, Amer. J. Math., 107, 1, 23-38 (1985) · Zbl 0593.14004 · doi:10.2307/2374455
[19] Johansson, Fredrik, Arb: efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE Trans. Comput., 66, 8, 1281-1292 (2017) · Zbl 1388.65037 · doi:10.1109/TC.2017.2690633
[20] Kolyvagin, V. A.; Logach\"ev, D. Yu., Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz. Leningrad Math. J., 1 1, 5, 1229-1253 (1990) · Zbl 0728.14026
[21] Lang, Serge, Introduction to Arakelov Theory, x+187 pp. (1988), Springer-Verlag, New York · Zbl 0667.14001 · doi:10.1007/978-1-4612-1031-3
[22] Lang, Serge, Fundamentals of Diophantine Geometry, xviii+370 pp. (1983), Springer-Verlag, New York · Zbl 0528.14013 · doi:10.1007/978-1-4757-1810-2
[23] Liu, Qing, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics 6, xvi+576 pp. (2002), Oxford University Press, Oxford · Zbl 0996.14005
[24] Molin, Pascal; Neurohr, Christian, Computing period matrices and the Abel-Jacobi map of superelliptic curves, Math. Comp., 88, 316, 847-888 (2019) · Zbl 1437.14060 · doi:10.1090/mcom/3351
[25] M\"{u}ller, Jan Steffen, Computing canonical heights using arithmetic intersection theory, Math. Comp., 83, 285, 311-336 (2014) · Zbl 1322.11074 · doi:10.1090/S0025-5718-2013-02719-6
[26] M\"{u}ller, J. Steffen; Stoll, Michael, Computing canonical heights on elliptic curves in quasi-linear time, LMS J. Comput. Math., 19, suppl. A, 391-405 (2016) · Zbl 1372.11068 · doi:10.1112/S1461157016000139
[27] M\"{u}ller, Jan Steffen; Stoll, Michael, Canonical heights on genus-2 Jacobians, Algebra Number Theory, 10, 10, 2153-2234 (2016) · Zbl 1383.11089 · doi:10.2140/ant.2016.10.2153
[28] Mumford, David, Tata Lectures on Theta. I, Progress in Mathematics 28, xiii+235 pp. (1983), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0509.14049 · doi:10.1007/978-1-4899-2843-6
[29] N\'{e}ron, A., Quasi-fonctions et hauteurs sur les vari\'{e}t\'{e}s ab\'{e}liennes, Ann. of Math. (2), 82, 249-331 (1965) · Zbl 0163.15205 · doi:10.2307/1970644
[30] Neurohr, Christian, Efficient integration on Riemann surfaces & applications (2018)
[31] Poonen, Bjorn; Schaefer, Edward F., Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math., 488, 141-188 (1997) · Zbl 0888.11023
[32] Poonen, Bjorn; Stoll, Michael, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2), 150, 3, 1109-1149 (1999) · Zbl 1024.11040 · doi:10.2307/121064
[33] Siksek, Samir, Infinite descent on elliptic curves, Rocky Mountain J. Math., 25, 4, 1501-1538 (1995) · Zbl 0852.11028 · doi:10.1216/rmjm/1181072159
[34] Silverman, Joseph H., Computing heights on elliptic curves, Math. Comp., 51, 183, 339-358 (1988) · Zbl 0656.14016 · doi:10.2307/2008597
[35] Stoll, Michael, On the height constant for curves of genus two. II, Acta Arith., 104, 2, 165-182 (2002) · Zbl 1139.11318 · doi:10.4064/aa104-2-6
[36] Stoll, Michael, An explicit theory of heights for hyperelliptic Jacobians of genus three. Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, 665-715 (2017), Springer, Cham · Zbl 1406.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.