×

Active contour with a tangential component. (English) Zbl 1343.94016

Summary: Conventional edge-based active contours often require the normal component of an edge indicator function on the optimal contours to approach zero, while the tangential component can still be significant. In real images, the full gradients of the edge indicator function along the object boundaries are often small. Hence, the curve evolution of edge-based active contours can terminate early before converging to the object boundaries with a careless contour initialization. We propose a novel Geodesic Snakes (GeoSnakes) active contour that requires the full gradients of the edge indicator to vanish at the optimal solution. Besides, the conventional curve evolution approach for minimizing active contour energy cannot fully solve the Euler-Lagrange equation of our GeoSnakes active contour, causing a pseudo stationary phenomenon (PSP). To address the PSP problem, we propose an auxiliary curve evolution equation, named the equilibrium flow (EF) equation. Based on the EF and the conventional curve evolution, we obtain a solution to the full Euler-Lagrange equation of GeoSnakes active contour. Experimental results validate the proposed geometrical interpretation of the early termination problem, and they also show that the proposed method is able to overcome the problem.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
92C55 Biomedical imaging and signal processing

References:

[1] Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266-280 (2000) · doi:10.1109/34.841758
[2] Schoenemann, T., Cremers, D.: A combinatorial solution for model-based image segmentation and real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1153-1164 (2010) · doi:10.1109/TPAMI.2009.79
[3] Yezzi, A.J., Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16(2), 199-209 (1997) · doi:10.1109/42.563665
[4] Leventon, M., Grimson, W., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2000)
[5] Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158-175 (1995) · doi:10.1109/34.368173
[6] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contour. Int. J. Comput. Vis. 22(1), 61-79 (1997) · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[7] Kimmel, R., Bruckstein, A.M.: Regularized laplacian zero crossings as optimal edge integrators. Int. J. Comput. Vis. 53(3), 225-243 (2003) · Zbl 1477.68385 · doi:10.1023/A:1023030907417
[8] Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation. SIAM J. Sci. Comput. 28, 2248-2265 (2006) · Zbl 1126.65088 · doi:10.1137/060651203
[9] Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884-900 (1996) · doi:10.1109/34.537343
[10] Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266-277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[11] Sumengen, B., Manjunath, B.: Graph partitioning active contours (gpac) for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 509-521 (2006) · doi:10.1109/TPAMI.2006.76
[12] Brox, T., Cremers, D.: On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional. Int. J. Comput. Vis. 84(2), 184-193 (2009) · Zbl 1477.68335 · doi:10.1007/s11263-008-0153-5
[13] Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for texture segmentation. IEEE Trans. Image Process. 16(6), 1633-1646 (2006) · Zbl 1152.90331 · doi:10.1109/TIP.2006.871133
[14] Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029-2039 (2008) · Zbl 1371.94213 · doi:10.1109/TIP.2008.2004611
[15] Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 402-407 (2004) · doi:10.1109/TPAMI.2004.1262337
[16] Xie, X., Mirmehdi, M.: Mac: magnetostatic active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 632-646 (2008) · doi:10.1109/TPAMI.2007.70737
[17] Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211-218 (1991) · Zbl 0774.68111 · doi:10.1016/1049-9660(91)90028-N
[18] Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359-369 (1998) · Zbl 0973.94003 · doi:10.1109/83.661186
[19] Li, C., Liu, J., Fox, M.D.: Segmentation of edge preserving gradient vector flow: an approach toward automatically initializing and splitting of snakes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2005)
[20] Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23, 67-86 (2005) · Zbl 1478.94005 · doi:10.1007/s10851-005-4968-1
[21] Benmansour, F., Cohen, L.D.: Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vis. 33(2), 209-221 (2009) · Zbl 1523.68142 · doi:10.1007/s10851-008-0131-0
[22] Wang, J., Chan, K.L., Wang, Y.: On the stationary solution of PDE based curve evolution. In: Proceedings of the 19th British Machine Vision Conference (2008)
[23] Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1-31 (1993) · Zbl 0804.68159 · doi:10.1007/BF01385685
[24] Haralick, R.M.: Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Pattern Anal. Mach. Intell. 6(1), 58-68 (1984) · doi:10.1109/TPAMI.1984.4767475
[25] McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4(2), 73-91 (2000) · doi:10.1016/S1361-8415(00)00008-6
[26] Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 2 (2003)
[27] Marr, D., Hildreth, E.: Theory of edge detection. In: Proceedings of the Royal Society of London. Series B, Biological Sciences, vol. 207, pp. 187-217 (1980)
[28] Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405-421 (2007) · doi:10.1109/TMI.2006.891486
[29] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321-331 (1988) · doi:10.1007/BF00133570
[30] Xu, C., Yezzi, A. Jr, Prince, J.: On the relationship between parametric and geometric active contours. In: Proccedings of 34th Asilomar Conference on Signals, Systems, and Computers (2000) · Zbl 0894.68131
[31] Epstein, CL; Gage, M.; Chorin, A. (ed.); Majda, A. (ed.), The curve shortening flow (1987), New York · Zbl 0645.53028
[32] Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, New York (2006) · Zbl 1141.35002
[33] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49 (1988) · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[34] Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002) · Zbl 1003.34002
[35] Osher, S., Fedkiw, R.: Level-Set Methods and Dynamic Implicit Surfacesp. Springer, New York (2003) · Zbl 1026.76001 · doi:10.1007/b98879
[36] Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient vector flow fast geodesic active contours. In: Proceedings of the 11th IEEE International Conference on Computer Vision (2001)
[37] Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632-1648 (2006) · Zbl 1117.94002 · doi:10.1137/040615286
[38] Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151-167 (2007) · Zbl 1523.94005 · doi:10.1007/s10851-007-0002-0
[39] Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118(2), 269-277 (1995) · Zbl 0823.65137 · doi:10.1006/jcph.1995.1098
[40] Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999) · Zbl 0973.76003
[41] Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Trans. Image Process. 17(5), 645-656 (2008) · doi:10.1109/TIP.2008.920737
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.