×

Numerical analysis of heating aerosol carbon nanofluid flow in a power plant recupesrator with considering ash fouling: a deep learning approach. (English) Zbl 1521.76743


MSC:

76M99 Basic methods in fluid mechanics
76V05 Reaction effects in flows
76T20 Suspensions

Software:

FLUENT
Full Text: DOI

References:

[1] Guo, Z.; Yang, J.; Tan, Z.; Tian, X.; Wang, Q., Numerical study on gravity-driven granular flow around tube out-wall: Effect of tube inclination on the heat transfer, International Journal of Heat and Mass Transfer, 174, Article 121296 pp. (2021)
[2] Zhu, D.; Wang, B.; Ma, H.; Wang, H., Evaluating the vulnerability of integrated electricity-heat-gas systems based on the high-dimensional random matrix theory, CSEE Journal of Power and Energy Systems, 6, 878-889 (2019)
[3] Habib, R.; Yadollahi, B.; Karimi, N.; Doranegard, M. H., On the unsteady forced convection in porous media subject to inlet flow disturbances-A pore-scale analysis, International Communications in Heat and Mass Transfer, 116, Article 104639 pp. (2020)
[4] Torabi, M.; Karimi, N.; Zhang, K.; Peterson, G., Generation of entropy and forced convection of heat in a conduit partially filled with porous media-local thermal non-equilibrium and exothermicity effects, Applied Thermal Engineering, 106, 518-536 (2016)
[5] Fakhar, M. H.; Fakhar, A.; Tabatabaei, H., Nanotechnology efficacy on improvement of acute velocity in fluid-conveyed pipes under thermal load, International Journal of Hydromechatronics, 4, 142-154 (2021)
[6] Dickson, C.; Torabi, M.; Karimi, N., First and second law analyses of nanofluid forced convection in a partially-filled porous channel-The effects of local thermal non-equilibrium and internal heat sources, Applied Thermal Engineering, 103, 459-480 (2016)
[7] Nazeer, M.; Hussain, F.; Khan, M. I.; El-Zahar, E. R.; Chu, Y.-M.; Malik, M., Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel, Applied Mathematics and Computation, 420, Article 126868 pp. (2022) · Zbl 1510.35241
[8] Chu, Y.-M.; Nazir, U.; Sohail, M.; Selim, M. M.; Lee, J.-R., Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal and Fractional, 5, 119 (2021)
[9] Chu, Y.-M.; Shankaralingappa, B.; Gireesha, B.; Alzahrani, F.; Khan, M. I.; Khan, S. U., Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface, Applied Mathematics and Computation, 419, Article 126883 pp. (2022) · Zbl 1510.76222
[10] Huang, K.; Su, B.; Li, T.; Ke, H.; Lin, M.; Wang, Q., Numerical simulation of the mixing behaviour of hot and cold fluids in the rectangular T-junction with/without an impeller, Applied Thermal Engineering, 204, Article 117942 pp. (2022)
[11] Karimi, N.; Agbo, D.; Khan, A. T.; Younger, P. L., On the effects of exothermicity and endothermicity upon the temperature fields in a partially-filled porous channel, International Journal of Thermal Sciences, 96, 128-148 (2015)
[12] Wang, H.; Harb, J. N., Modeling of ash deposition in large-scale combustion facilities burning pulverized coal, Progress in Energy and Combustion Science, 23, 267-282 (1997)
[13] Peng, Y.; Xu, Z.; Wang, M.; Li, Z.; Peng, J.; Luo, J.; Xie, S.; Pu, H.; Yang, Z., Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators, Renewable Energy, 172, 551-563 (2021)
[14] Hunt, G.; Karimi, N.; Yadollahi, B.; Torabi, M., The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors, International Journal of Heat and Mass Transfer, 134, 1227-1249 (2019)
[15] Hunt, G.; Karimi, N.; Torabi, M., Analytical investigation of heat transfer and classical entropy generation in microreactors-The influences of exothermicity and asymmetry, Applied Thermal Engineering, 119, 403-424 (2017)
[16] Afrand, M.; Farahat, S.; Nezhad, A. H.; Sheikhzadeh, G. A.; Sarhaddi, F., NUMERICAL SIMULATION OF ELECTRICALLY CONDUCTING FLUID FLOW AND FREE CONVECTIVE HEAT TRANSFER IN AN ANNULUS ON APPLYING A MAGNETIC FIELD, 45, 749-766 (2014)
[17] Zhang, S.; Shen, G.; An, L.; Li, G., Ash fouling monitoring based on acoustic pyrometry in boiler furnaces, Applied Thermal Engineering, 84, 74-81 (2015)
[18] Wang, Y.; Tan, H.; Dong, K.; Liu, H.; Xiao, J.; Zhang, J., Study of ash fouling on the blade of induced fan in a 330 MW coal-fired power plant with ultra-low pollutant emission, Applied Thermal Engineering, 118, 283-291 (2017)
[19] Afrand, M.; Farahat, S.; Nezhad, A. H.; Sheikhzadeh, G. A.; Sarhaddi, F.; Wongwises, S., Multi-objective optimization of natural convection in a cylindrical annulus mold under magnetic field using particle swarm algorithm, International Communications in Heat and Mass Transfer, 60, 13-20 (2015)
[20] Pérez, M. G.; Vakkilainen, E.; Hyppänen, T., The contribution of differently-sized ash particles to the fouling trends of a pilot-scale coal-fired combustor with an ash deposition CFD model, Fuel, 189, 120-130 (2017)
[21] Fu, L.; Liu, P.; Li, G., Numerical investigation on ash fouling characteristics of flue gas heat exchanger, Applied Thermal Engineering, 123, 891-900 (2017)
[22] Kleinhans, U.; Wieland, C.; Frandsen, F. J.; Spliethoff, H., Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior, Progress in Energy and Combustion Science, 68, 65-168 (2018)
[23] Wei, W.; Sun, F.; Ma, L., Effect of fine ash particles on formation mechanism of fouling covering heat exchangers in coal-fired power plants, Applied Thermal Engineering, 142, 269-277 (2018)
[24] Izadi, M.; Sinaei, S.; Mehryan, S.; Oztop, H. F.; Abu-Hamdeh, N., Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model, International Journal of Heat and Mass Transfer, 127, 67-75 (2018)
[25] Selimefendigil, F.; Öztop, H. F., Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders, International Journal of Heat and Mass Transfer, 117, 331-343 (2018)
[26] Rostami, S.; Sepehrirad, M.; Dezfulizadeh, A.; Kadhim Hussein, A.; Shahsavar Goldanlou, A.; Safdari Shadloo, M., Exergy Optimization of a Solar Collector in Flat Plate Shape Equipped with Elliptical Pipes Filled with Turbulent Nanofluid Flow: A Study for Thermal Management, Water, 12, 2294 (2020)
[27] Selimefendigil, F.; Öztop, H. F., Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation, Journal of the Taiwan Institute of Chemical Engineers, 56, 42-56 (2015)
[28] Astanina, M. S.; Sheremet, M. A.; Oztop, H. F.; Abu-Hamdeh, N., Mixed convection of Al2O3-water nanofluid in a lid-driven cavity having two porous layers, International Journal of Heat and Mass Transfer, 118, 527-537 (2018)
[29] Shahsavar Goldanlou, A.; Sepehrirad, M.; Dezfulizadeh, A.; •Golzar, A.; Badri, M.; Rostami, S., Efects of using ferromagnetic hybrid nanoluid in an evacuated sweep-shape solar receiver, Journal of Thermal Analysis and Calorimetry, 143, 1623-1636 (2021)
[30] Selimefendigil, F.; Öztop, H. F., Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity, International Journal of Heat and Mass Transfer, 129, 265-277 (2019)
[31] Öztop, H. F.; Estellé, P.; Yan, W.-M.; Al-Salem, K.; Orfi, J.; Mahian, O., A brief review of natural convection in enclosures under localized heating with and without nanofluids, International Communications in Heat and Mass Transfer, 60, 37-44 (2015)
[32] Nazir, M. S.; Ghasemi, A.; Dezfulizadeh, A.; Abdalla, A., Numerical simulation of the performance of a novel parabolic solar receiver filled with nanofluid, Journal of Thermal Analysis and Calorimetry, 144, 2653-2664 (2021)
[33] Haddad, Z.; Oztop, H. F.; Abu-Nada, E.; Mataoui, A., A review on natural convective heat transfer of nanofluids, Renewable and Sustainable Energy Reviews, 16, 5363-5378 (2012)
[34] Tahmasebiboldaji, M.; Afrand, M.; Barzinjy, A. A.; Hamad, S. M.; Talebizadehsardari, P., Forced convection around horizontal tubes bundles of a heat exchanger using a two-phase mixture model: Effects of nanofluid and tubes Configuration, International Journal of Mechanical Sciences, 161, Article 105056 pp. (2019)
[35] Yulin, M.a.; Jamiatia, M.; Aghaei, A.; Sepehrirad, M.; Dezfulizadeh, A.; Afrand, M., Effect of differentially heated tubes on natural convection heat transfer in a space between two adiabatic horizontal concentric cylinders using nano-fluid, International Journal of Mechanical Sciences, 163, Article 105148 pp. (2019)
[36] Kashyap, D.; Dass, A. K., Effect of boundary conditions on heat transfer and entropy generation during two-phase mixed convection hybrid Al2O3-Cu/water nanofluid flow in a cavity, International Journal of Mechanical Sciences, 157, 45-59 (2019)
[37] Motlagh, S. Y.; Golab, E.; Sadr, A. N., Two-phase modeling of the free convection of nanofluid inside the inclined porous semi-annulus enclosure, International Journal of Mechanical Sciences, 164, Article 105183 pp. (2019)
[38] Dezfulizadeh, A.; Aghaei, A.; Hassani Joshaghani, A.; Najafizadeh, M. M., Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu-SiO2-MWCNT ternary hybrid nanofluid based on empirical data, Journal of Thermal Analysis and Calorimetry, 147, 4781-4804 (2021)
[39] Selimefendigil, F.; Öztop, H. F., Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS, International Journal of Mechanical Sciences, 146, 9-24 (2018)
[40] Garmroodi, M. D.; Ahmadpour, A.; Talati, F., MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: a two-phase numerical study, International Journal of Mechanical Sciences, 150, 247-264 (2019)
[41] Najim, M.; Alla, A. N.; Charef, A., Computational study of evaporating nanofluids film along a vertical channel by the two-phase model, International Journal of Mechanical Sciences, 151, 858-867 (2019)
[42] Aghaei, A.; Bhattacharyy, S.; Dezfulizadeh, A.; Goldanlou, A. S.; Rostami, S.; Sharifpur, M., Heat transfer and fluid flow analysis using nanofluids in diamond-shaped cavities with novel obstacles, Engineering Applications of Computational Fluid Mechanics, 15 (2021)
[43] Siavashi, M.; Rostami, A., Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media, International Journal of Mechanical Sciences, 133, 689-703 (2017)
[44] Karimi, A.; Al-Rashed, A. A.; Afrand, M.; Mahian, O.; Wongwises, S.; Shahsavar, A., The effects of tape insert material on the flow and heat transfer in a nanofluid-based double tube heat exchanger: two-phase mixture model, International Journal of Mechanical Sciences, 156, 397-409 (2019)
[45] Gorjaei, A. R.; Soltani, M.; Bahiraei, M.; Kashkooli, F. M., CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: heat transfer and entropy generation analyses, International Journal of Mechanical Sciences, 146, 396-404 (2018)
[46] Saleh, M. M.; Al-Dadah, R.; Mahmoud, S.; Elsayed, E.; El-Samni, O., Wire fin heat exchanger using aluminium fumarate for adsorption heat pumps, Applied Thermal Engineering, 164, Article 114426 pp. (2020)
[47] Hagen, B. A.; Nikolaisen, M.; Andresen, T., A novel methodology for Rankine cycle analysis with generic heat exchanger models, Applied Thermal Engineering, 165, Article 114566 pp. (2020)
[48] Larwa, B.; Kupiec, K., Heat transfer in the ground with a horizontal heat exchanger installed-Long-term thermal effects, Applied Thermal Engineering, 164, Article 114539 pp. (2020)
[49] Wen, Z.-X.; Lv, Y.-G.; Li, Q.; Zhou, P., Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters, International Journal of Heat and Mass Transfer, 147, Article 118922 pp. (2020)
[50] Chu, W.-X.; Sheu, W.-J.; Hsu, C.-C.; Wang, C.-C., Airside performance of sinusoidal wavy fin-and-tube heat exchangers subject to large-diameter tubes with round or oval configuration, Applied Thermal Engineering, 164, Article 114469 pp. (2020)
[51] Yu, C.; Zhang, H.; Zeng, M.; Wang, R.; Gao, B., Numerical study on turbulent heat transfer performance of a new compound parallel flow shell and tube heat exchanger with longitudinal vortex generator, Applied Thermal Engineering, 164, Article 114449 pp. (2020)
[52] Wang, X.; Wang, R.; Bh, J. M.; Ouyang, H., A Study of Effect of Various Normal Force Loading Forms on Frictional Stick-Slip Vibration, Journal of Dynamics, Monitoring and Diagnostics, 1, 46-55 (2022)
[53] Tee, K. F., The influence of water on frequency response of concrete plates armed by nanoparticles utilising analytical approach, International Journal of Hydromechatronics, 3, 51-68 (2020)
[54] Li, M.; Liu, Y.; Zhi, S.; Wang, T.; Chu, F., Short-time Fourier Transform Using Odd Symmetric Window Function, Journal of Dynamics, Monitoring and Diagnostics, 1, 37-45 (2022)
[55] Yesilyurt, I.; Dalkiran, A.; Yesil, O.; Mustak, O., Scalogram-Based Instantaneous Features of Acoustic Emission in Grinding Burn Detection, Journal of Dynamics, Monitoring and Diagnostics, 1, 19-28 (2022)
[56] Ghasemi, A.; Hassani, M.; Goodarzi, M.; Afrand, M.; Manafi, S., Appraising influence of COOH-MWCNTs on thermal conductivity of antifreeze using curve fitting and neural network, Physica A: Statistical Mechanics and its Applications, 514, 36-45 (2019)
[57] Shirneshan, A.; Bagherzadeh, S. A.; Najafi, G.; Mamat, R.; Mazlan, M., Optimization and investigation the effects of using biodiesel-ethanol blends on the performance and emission characteristics of a diesel engine by genetic algorithm, Fuel, 289, Article 119753 pp. (2021)
[58] Xiaohong, D.; Huajiang, C.; Bagherzadeh, S. A.; Shayan, M.; Akbari, M., Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method, Physica A: Statistical Mechanics and its Applications, 537, Article 122782 pp. (2020)
[59] Alizadeh, R.; Abad, J. M.N.; Fattahi, A.; Mohebbi, M. R.; Doranehgard, M. H.; Li, L. K.; Alhajri, E.; Karimi, N., A machine learning approach to predicting the heat convection and thermodynamics of an external flow of hybrid nanofluid, Journal of Energy Resources Technology, 143, Article 070908 pp. (2021)
[60] Bagherzadeh, S. A.; Ruhani, B.; Namar, M. M.; Alamian, R.; Rostami, S., Compression ratio energy and exergy analysis of a developed Brayton-based power cycle employing CAES and ORC, Journal of Thermal Analysis and Calorimetry, 139, 2781-2790 (2020)
[61] Mei, X.; Li, Z.; Bagherzadeh, S. A.; Karimipour, A.; Bahrami, M.; Karimipour, A., Development of the ANN-KIM composed model to predict the nanofluid energetic thermal conductivity via various types of nano-powders dispersed in oil, Journal of Thermal Analysis and Calorimetry, 145, 2123-2128 (2021)
[62] Peng, Y.; Ghahnaviyeh, M. B.; Ahmad, M. N.; Abdollahi, A.; Bagherzadeh, S. A.; Azimy, H.; Mosavi, A.; Karimipour, A., Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: an experimental and numerical study, International Journal of Thermal Sciences, 163, Article 106863 pp. (2021)
[63] Esfe, M. H.; Kamyab, M. H.; Afrand, M.; Amiri, M. K., Using artificial neural network for investigating of concurrent effects of multi-walled carbon nanotubes and alumina nanoparticles on the viscosity of 10W-40 engine oil, Physica A: Statistical Mechanics and its Applications, 510, 610-624 (2018)
[64] Zhao, T. H.; Khan, M. I.; Chu, Y. M., Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Mathematical Methods in the Applied Sciences (2021)
[65] Liu, Z.; Fang, L.; Jiang, D.; Qu, R., A Machine-learning Based Fault Diagnosis Method with Adaptive Secondary Sampling for Multiphase Drive Systems, IEEE Transactions on Power Electronics (2022)
[66] Wu, X.; Liu, Z.; Yin, L.; Zheng, W.; Song, L.; Tian, J.; Yang, B.; Liu, S., A Haze Prediction Model in Chengdu Based on LSTM, Atmosphere, 12, 1479 (2021)
[67] Esfe, M. H.; Reiszadeh, M.; Esfandeh, S.; Afrand, M., Optimization of MWCNTs (10
[68] Yongbin, Y.; Bagherzadeh, S. A.; Azimy, H.; Akbari, M.; Karimipour, A., Comparison of the artificial neural network model prediction and the experimental results for cutting region temperature and surface roughness in laser cutting of AL6061T6 alloy, Infrared Physics & Technology, 108, Article 103364 pp. (2020)
[69] Zhang, Z.; Tian, J.; Huang, W.; Yin, L.; Zheng, W.; Liu, S., A Haze Prediction Method Based on One-Dimensional Convolutional Neural Network, Atmosphere, 12, 1327 (2021)
[70] Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q., A review of wind speed and wind power forecasting with deep neural networks, Applied Energy, 304, Article 117766 pp. (2021)
[71] Khalaf, M. M., ALGORITHMS AND OPTIMAL CHOICE FOR POWER PLANTS BASED ON M-POLAR FUZZY SOFT SET DECISION MAKING CRITERIONS, Acta Electron Malaysia, 4, 11-23 (2020)
[72] Mesgarpour, M.; Abad, J. M.N.; Alizadeh, R.; Wongwises, S.; Doranehgard, M. H.; Jowkar, S.; Karimi, N., Predicting the effects of environmental parameters on the spatio-temporal distribution of the droplets carrying coronavirus in public transport-A machine learning approach, Chemical Engineering Journal, 430, Article 132761 pp. (2022)
[73] Safa, M.; Ahmadi, M.; Mehrmashadi, J.; Petkovic, D.; Mohammadhassani, M.; Zandi, Y.; Sedghi, Y., Selection of the most influential parameters on vectorial crystal growth of highly oriented vertically aligned carbon nanotubes by adaptive neuro-fuzzy technique, International Journal of Hydromechatronics, 3, 238-251 (2020)
[74] Arani, A. A.A.; Arefmanesh, A.; Ehteram, H., Numerical optimization of obstructed high temperature heat exchanger for recovery from the flue gases by considering ash fouling characteristics, International Journal of Numerical Methods for Heat & Fluid Flow (2019)
[75] Brach, R. M.; Dunn, P. F., Models of rebound and capture for oblique microparticle impacts, Aerosol Science and Technology, 29, 379-388 (1998)
[76] Dunn, P. F.; Brach, R. M.; Caylor, M. J., Experiments on the low-velocity impact of microspheres with planar surfaces, Aerosol Science and Technology, 23, 80-95 (1995)
[77] Sadripour, S., 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran, International Journal of Numerical Methods for Heat & Fluid Flow (2019)
[78] Jena, S. K.; Mahapatra, S. K., Numerical modeling of interaction between surface radiation and natural convection of atmospheric aerosol in presence of transverse magnetic field, Applied Mathematical Modelling, 37, 527-539 (2013) · Zbl 1349.86004
[79] Patankar, S. V., Numerical heat transfer and fluid flow (2018), CRC press
[80] Sadripour, S.; Chamkha, A. J., The effect of nanoparticle morphology on heat transfer and entropy generation of supported nanofluids in a heat sink solar collector, Thermal Science and Engineering Progress, 9, 266-280 (2019)
[81] Cao, W.; You, X., Effects of wall fins patterns on the flue gas performance of condensing heat exchanger, Procedia Engineering, 205, 2281-2288 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.