×

Modelling coffee leaf rust dynamics to control its spread. (English) Zbl 1473.35594

Summary: Coffee leaf rust (CLR) is one of the main diseases that affect coffee plantations worldwide. It is caused by the fungus Hemileia vastatrix. Damages induce severe yield losses (up to 70%). Its control mainly relies on cultural practices and fungicides, the latter having harmful ecological impact and important cost. Our goal is to understand the propagation of this fungus in order to propose a biocontrol solution, based on a mycoparasite that inhibits H. vastatrix reproduction. We develop and explore a spatio-temporal model that describes CLR propagation in a coffee plantation during the rainy and dry seasons. We show the existence of a solution and prove that there exists two threshold parameters, the dry and rainy basic reproduction numbers, that determine the stability of the equilibria for the dry and rainy season subsystems. To illustrate these theoretical results, numerical simulations are performed, using a non-standard finite method to integrate the pest model. We also numerically investigate the biocontrol impact. We determine its efficiency threshold in order to ensure CLR eradication.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35K57 Reaction-diffusion equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
92D30 Epidemiology
92C80 Plant biology

References:

[1] G.N. Agrios, Plant Pathology. Academic Press, San Diego, USA, 4 edition (1997).
[2] P.A. Arneson, Coffee rust. The Plant Health Instructor (2000). Available at http://www.apsnet.org/edcenter/intropp/lessons/fungi/Basidiomycetes/Pages/CoffeeRust.aspx (2011).
[3] J. Arroyo-Esquivel, F. Sanchez and L.A. Barboza, Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds. Math. Biosci. 307 (2019) 13-24. · Zbl 1409.92222 · doi:10.1016/j.mbs.2018.10.009
[4] J. Avelino, L. Willocquet and S. Savary, Effects of crop management patterns on coffee rust epidemics. Plant Pathol. 53 (2004) 541-547. · doi:10.1111/j.1365-3059.2004.01067.x
[5] J. Avelino, H. Zelaya, A. Merlo, A. Pineda, M. Ordóñez and S. Savary, The intensity of a coffee rust epidemic is dependent on production situations. Ecol. Model. 197 (2006) 431-447. · doi:10.1016/j.ecolmodel.2006.03.013
[6] D.P. Bebber, Á.D. Castillo and S.J. Gurr, Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philos. Trans. Royal Soc. B: Biol. Sci. 371 (2016) 20150458. · doi:10.1098/rstb.2015.0458
[7] J.A.M. Bedimo, B.P. Dufour, C. Cilas and J. Avelino, Effets des arbres d’ombrage sur les bioagresseurs de Coffea arabica. Cahiers Agric. 21 (2012) 89-97. · doi:10.1684/agr.2012.0550
[8] K.R. Bock, Dispersal of uredospores of Hemileia vastatrix under field conditions. Trans. Br. Mycolog. Soc. 45 (1962) 63-74. · doi:10.1016/S0007-1536(62)80035-7
[9] J.-B. Burie, A. Calonnec and M. Langlais, Modeling of the invasion of a fungal disease over a vineyard. Vol. 2 of Mathematical Modeling of Biological Systems. Springer (2008) 11-21.
[10] A. Capucho, L. Zambolim, U. Lopes and N. Milagres, Chemical control of coffee leaf rust in Coffea canephora cv. conilon. Aust. Plant Pathol. 42 (2013) 667-673. · doi:10.1007/s13313-013-0242-y
[11] G. Carrion and V. Rico-Gray, Mycoparasites on the coffee rust in Mexico. Fungal Divers. 11 (2002) 49-60.
[12] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1 (2004) 361. · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
[13] A. Charrier and J. Berthaud, Botanical classification of coffee. In Coffee. Springer (1985) 13-47. · doi:10.1007/978-1-4615-6657-1_2
[14] L. Galbusera, M.P.E. Marciandi, P. Bolzern and G. Ferrari-Trecate, Control schemes based on the wave equation for consensus in multi-agent systems with double-integrator dynamics. In 2007 46th IEEE Conference on Decision and Control. IEEE (2007) 1498-1503. · doi:10.1109/CDC.2007.4434358
[15] G. Grée Epidemiology of coffee leaf rust in the Eastern Highlands. Coffee Res. Inst. Newsletter 2 (1993) 16-20.
[16] F. Haddad, L.A. Maffia, E.S.G. Mizubuti and H. Teixeira, Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil. Biol. Control 49 (2009) 114-119. · doi:10.1016/j.biocontrol.2009.02.004
[17] F. Haddad, R.M. Saraiva, E.S.G. Mizubuti, R.S. Romeiro and L.A. Maffia, Antifungal compounds as a mechanism to control Hemileia vastatrix by antagonistic bacteria. Tropical Plant Pathol. 38 (2013) 398-405. · doi:10.1590/S1982-56762013000500004
[18] Institut de Recherches du Café, du Cacao et autres plantes stimulantes (IRCC), Montpellier, France. Manuel du planteur de café Laotien (1991).
[19] International Coffee Organization, Coffee production by exporting countries. Trade statistics tables: http://www.ico.org/prices/po-production.pdf (accessed 23/2/2020).
[20] H. Kielhöfer, Stability and semilinear evolution equations in Hilbert space. Arch. Ratl. Mech. Anal. 57 (1974) 150-165. · Zbl 0337.34056 · doi:10.1007/BF00248417
[21] J.P. LaSalle, Vol. 25 of The stability of dynamical systems. Siam (1976). · Zbl 0364.93002
[22] L. Mailleret and F. Grognard, Global stability and optimisation of a general impulsive biological control model. Math. Biosci. 221 (2009) 91-100. · Zbl 1175.92070 · doi:10.1016/j.mbs.2009.07.002
[23] R.E. Mickens, Nonstandard finite difference schemes for reaction-diffusion equations. Numer. Methods Partial Differ. Equ. 15 (1999) 201-214. · Zbl 0926.65085 · doi:10.1002/(SICI)1098-2426(199903)15:2<201::AID-NUM5>3.0.CO;2-H
[24] R.A. Muller, D. Berry, J. Avelino and D. Bieysse, Chap. 4 of Coffee Diseases. John Wiley & Sons, Ltd (2008) 491-545.
[25] F.J. Nutman, F.M. Roberts and R.T. Clarke, Studies on the biology of hemileia vastatrix berk. & br. Trans. Br. Mycolog. Soc. 46 (1963) 27-44. · doi:10.1016/S0007-1536(63)80005-4
[26] C.-V. Pao, Nonlinear parabolic and elliptic equations. Springer Science & Business Media (2012).
[27] J. Papaïx, K. Adamczyk-Chauvat, A. Bouvier, K. Kiêu, S. Touzeau, C. Lannou and H. Monod, Pathogen population dynamics in agricultural landscapes: The Ddal modelling framework. Infect. Genetics Evol. 27 (2014) 509-520. · doi:10.1016/j.meegid.2014.01.022
[28] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Vol. 44. Springer Science & Business Media (2012). · Zbl 0516.47023
[29] R.W. Rayner, Germination and penetration studies on coffee rust (Hemileia vastatrix B. & Br.). Ann. Appl. Biol. 49 (1961) 497-505. · doi:10.1111/j.1744-7348.1961.tb03641.x
[30] C.J. Rodrigues Jr Coffee rusts: history, taxonomy, morphology, distribution and host resistance. Fitopatolog. Bras. 15 (1990) 5-9.
[31] N. Sapoukhina, Y. Tyutyunov, I. Sache and R. Arditi, Spatially mixed crops to control the stratified dispersal of airborne fungal diseases. Ecol. Model. 221 (2010) 2793-2800. · doi:10.1016/j.ecolmodel.2010.08.020
[32] H.F. Shiomi, H.S.A. Silva, I.S.d. Melo, F.V. Nunes and W. Bettiol, Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Sci. Agricola 63 (2006) 32-39. · doi:10.1590/S0103-90162006000100006
[33] H.S.A. Silva, J.P. Tozzi, C.R.F. Terrasan and W. Bettiol, Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biol. Control 63 (2012) 62-67. · doi:10.1016/j.biocontrol.2012.06.005
[34] J.-B. Suchel, Quelques remarques à propos de la répartition des pluies au Cameroun durant la p��riode sèche 1969-1973. Hommes et Terres du Nord 3 (1983) 24-28. · doi:10.3406/htn.1983.1881
[35] C. Tadmon and S. Foko, Modeling and mathematical analysis of an initial boundary value problem for hepatitis b virus infection. J. Math. Anal. Appl. 474 (2019) 309-350. · Zbl 1414.92211 · doi:10.1016/j.jmaa.2019.01.047
[36] V.M. Toledo and P. Moguel, Coffee and sustainability: the multiple values of traditional shaded coffee. J. Sustain. Agric. 36 (2012) 353-377. · doi:10.1080/10440046.2011.583719
[37] J. Vandermeer, Z. Hajian-Forooshani and I. Perfecto, The dynamics of the coffee rust disease: an epidemiological approach using network theory. Eur. J. Plant Pathol. 150 (2018) 1001-1010. · doi:10.1007/s10658-017-1339-x
[38] J. Vandermeer, D. Jackson and I. Perfecto, Qualitative dynamics of the coffee rust epidemic: educating intuition with theoretical ecology. BioScience 64 (2014) 210-218. · doi:10.1093/biosci/bit034
[39] J. Vandermeer, I. Perfecto and H. Liere, Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web. Plant Pathol. 58 (2009) 636-641. · doi:10.1111/j.1365-3059.2009.02067.x
[40] J. Vandermeer and P. Rohani, The interaction of regional and local in the dynamics of the coffee rust disease. Preprint arXiv:1407.8247 (2014).
[41] J.M. Waller, Coffee rust-epidemiology and control. Crop Protect. 1 (1982) 385-404. · doi:10.1016/0261-2194(82)90022-9
[42] J. Wang, J. Yang and T. Kuniya, Dynamics of a pde viral infection model incorporating cell-to-cell transmission. J. Math. Anal. Appl. 444 (2016) 1542-1564. · Zbl 1362.37165 · doi:10.1016/j.jmaa.2016.07.027
[43] A. Yagi, Abstract parabolic evolution equations and their applications. Springer Science & Business Media (2009). · Zbl 1190.35004
[44] L. Zambolim and M.C. Chaves, Efeito de baixas temperaturas e do binomio temperatura-umidade relativa sobre a viabilidade dos uredosporos de Hemileia vastatrix Berk. et Br. e Uromyces phaseoli typica arth. Experientiae (Brasil) 17 (1974) 151-184.
[45] W. Zhu, Global exponential stability of impulsive reaction-diffusion equation with variable delays. Appl. Math. Comput. 205 (2008) 362-369. · Zbl 1160.35448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.